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1 INTRODUCTION 1

1 Introduction

In many fields of research, experiments are conducted to measure differences between sub-
ject groups of interest. Experimenters are interested in the behavior of groups of subjects
which are influenced by a factor and, within a factor, by different factor levels. For exam-
ple, in medical statistics dose finding studies aim at finding a medication dose, at which a
certain medication is effective, but not harmful. In such a study, subjects are commonly
split into different groups, a placebo group and several groups of different dosage. Then,
the medication is referred to as the factor and the different dosage levels as factor levels.
After having allocated the subjects into distinct groups, a relevant parameter of interest is
measured, the so called dependent variable. This can be a blood parameter from a metric
scale, like the C-reactive protein (CRP), or a discrete scale in which the subjects describe
their own well-being, like the visual analogue scale (VAS). Frequently, more information,
such as the age of the subjects, is taken to provide for typical descriptive statistics. These
parameters, which are not relevant for the hypothesis of the experiment, but might have
an influence on the dependent variable, are referred to as concomitant variables or covariates.

When trying to verify a difference in the dependent variable between experimental groups,
the most common tests are the t-test Student (1908), in the case of only two experimental
groups, and the analysis of variance (ANOVA), see e.g. Timm (1975) p.359, for inference in
more than two groups. These methods require the dependent variable to follow a normal dis-
tribution. Should this not be the case, for example when the dependent variable is collected
on a discrete scale, non-parametric alternatives like Wilcoxon-Mann-Whitney-Test Mann
and Whitney (1947), in the case of two experimental groups, and the Kruskal-Wallis-Test
Kruskal and Wallis (1952), for more than two groups, can be applied to test for differences
in the dependent variable between the experimental groups.

While these procedures are adequate when testing the global hypothesis, i.e. “there is
no effect between the experimental groups”, in the case of more than two groups they do
not provide the experimental supervisor with an answer to which groups differ. This ques-
tion is answered by conducting pairwise-comparisons, comparing all groups or only selected
groups of interest with each other. To cope with α-inflation, the p-values from the pairwise-
comparisons are commonly adjusted using the Bonferroni correction or the less conservative
Bonferroni-Holm correction Holm (1979).

In recent years, procedures have been developed which make the testing of the global hy-
pothesis and afterward sequential testing obsolete. These new procedures are often referred
to as simultaneous test procedures. For a semi-parametric model, like the case of a normal
distributed dependent variable, Hothorn et al. (2008) developed procedures for simultaneous
inference, replacing the ANOVA with subsequent p-value correction. In a non-parametric
setting, Konietschke et al. (2012a) provide for simultaneous inference in factorial designs.

When additionally taking into account covariates, other procedures have to be applied for
statistical inference. In place of the ANOVA, the so called analysis of covariance (AN-
COVA), an ANOVA model with an additional regression term (3.1) is used instead. The
procedures developed by Hothorn et al. (2008) allow for simultaneous inference in the AN-
COVA and ANOVA model alike. In a non-parametric setting, several works provide for
statistical analysis, among them Quade (1967), Langer (1998) and Siemer (1999). These
merely provide for testing of global hypothesis though, making a pairwise-comparisons and
subsequent correction of the p-values necessary when investigating for differences between



1 INTRODUCTION 2

the groups. So far, no simultaneous test procedures for the non-parametric setting exist,
which are capable of considering covariates. The aim of this thesis will be to provide for a
non-parametric simultaneous test procedure which considers covariates.

1.1 Motivating Covariates

When taking into account covariates in a parametric setting we assume a linear dependency
between the covariate and the dependent variable (3.1). By taking this dependency into
account in the statistical inference we hope to reduce the variance of the error term, giving
more precise testing results and thus a higher power of the test. Figure 1 illustrates how
covariates are supposed to reduce the error term and increase the power of the test statistic.

ANOVA Model
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Figure 1: Variance partitioning for the ANOVA model (left), the regression model (center) and the
ANCOVA model (right), according to Huitema (1980) p.26.

Figure 1 shows how the ANOVA partitions the variance into between and within variance,
where the between variance is explained through the factor levels while the within variance
is not. On the other hand, the regression model tries to explain as much of the variance of
the residual as possible through the regressor, or in this case, through the covariate, leaving
the unexplained variance to the residual. The ANCOVA model combines these two models,
and therefore leads to a reduced variation of the error term.

In a non-parametric setting we also aim at reducing the variation of the dependent variable
by partially explaining the dependent variable through the covariates, but using the ranks
of the observations. More precisely, we assume a linear dependency between the rank of the
dependent variable and the rank of the covariate (2.8). Within this setting, we are able to
reduce the variance of the dependent variable by adjusting through the covariates.

It is important to understand, that this is the sole purpose of using covariates. Many
experimenters wish to correct the dependent variable through covariates, especially when
the covariate is unequally distributed among the factor levels and a correction promises more
favorable results. Huitema (1980) comments on this issue:

“If a non-randomized design other than the biased assignment design [a design
with sufficiently randomized covariates] is employed and the covariate is mea-
sured after treatments are administered, the ANOVA on the covariate will be es-
sentially uninterpretable because treatment effects and pretreatment differences
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among the populations will be confounded.” (p.190)

In fact, the overwhelming majority of opinions condemns the logic of correcting for covariates
as not consistent and an abusive use of covariates, see Miller and Chapman (2001) for a full
list of comments out of a broad range of literature. Covariates are not intended to correct
a bias caused by bad or unhappy pre-experiment randomization. From this argumentation
it immediately follows, that covariates should be chosen to be independent from the factor
levels and equally distributed among the factor levels, otherwise interpretation difficulties
will arise when conducting statistical analyses.

The thesis is structured as follows. In Section 2 we present the basic notation used through-
out the thesis, as well as the underlying non-parametric model with and without covariates.
We continue by explaining how hypotheses are formed and how they differ between the mod-
els presented. Afterwards, estimators are presented which will be used to conduct statistical
analyses. In Section 3 we then continue by introducing parametric and non-parametric pro-
cedures for statistical inference with covariates. Then, the simultaneous test procedure for
considering covariates in a non-parametric model is derived. In Section 4, the introduced
procedures are compared in an extensive simulation study. Section 5 shows how the newly
derived procedure can be applied on an example, the Bogalusa Heart Study. Section 6
concludes the thesis, giving an outlook on possible improvements and discussing the results
attained. Section 7 contains supplementary material like theoretical results used throughout
the thesis, as well as supplementary simulation results and programming code.
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2 Preliminaries

2.1 Basic Notation and Important Definitions

To begin with, we introduce the basic notation which is used throughout the thesis. While
some of the notation mentioned is widely spread, it is still listed here to avoid any confusion.
Following notation will be used:

− The indicator function will be denoted by 1{logical request}. If the logical request is true,
then the term 1{logical request} is equal to 1, else it is equal to 0.

− The term 1n = (1, 1, . . . , 1)′ denotes a vector of ones of length n. Although there is
a symbolic similarity to the indicator function, the two terms differ in the choice of
their index, and therefore in their meaning.

− The unit matrix of dimension n× n is denoted by In.

− The centering matrix of dimension n× n will be denoted by Pn = In − 1/n · 1n1′n.

− The term 0 denotes either a vector (0, 0, . . . , 0)′ or a matrix of 0’s of appropriate size
for the setting it is used in.

− The operator ⊕ denotes the direct sum, i.e. for two matrices A ∈ Rn×m and B ∈ Rs×t:

A⊕B =

(
A 0
0 B

)
∈ R(n+s)×(m+t).

− The operator ⊗ denotes Kronecker’s product, i.e. for two matrices A ∈ Rn×m and
B ∈ Rs×t:

A⊗B =

a11B a12B . . . a1mB
...

...
...

...
an1B an2B . . . anmB

 ∈ R(ns)×(mt).

− For values X1, . . . , Xn, let X · = 1/n
∑n
i=1Xi denote the mean of these values.

− The rank and trace of a matrix A ∈ Rn×m are denoted by rank(A) and tr(A) respec-
tively.

− The diagonal matrix of a matrix A ∈ Rn×n is denoted as:

diag(A) =


a11 0 . . . 0

0 a22
. . . 0

...
. . .

. . .
...

0 0 . . . ann

 .

− The diagonal matrix of a set of values {a1, . . . , an} ist denoted as:

dia(a1, . . . , an) =


a1 0 . . . 0

0 a2
. . . 0

...
. . .

. . .
...

0 0 . . . an

 .
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Definition 2.1.1 (Convergence types). Let X denote a random variable with distribution
function F and X1, . . . , Xn denote a sequence of random variables with corresponding dis-
tribution functions F1, . . . , Fn. If:

1. For all continuity points of F it holds, that lim
n→∞

Fn(x) = F (x), then Xn converges

in distribution to X and we write: Xn
D→ X.

2. For all ε > 0 it holds that lim
n→∞

P (|Xn − X| ≥ ε) = 0, then Xn converges in

probability to X and we write: Xn
P→ X.

3. It holds, that P ( lim
n→∞

Xn = X) = 1, then Xn converges almost surely to X and we

write: Xn
a.s.→ X.

4. It holds, that lim
n→∞

E(|Xn − X|r) = 0, then Xn converges to X in the rth mean

and we write: Xn
Lr

→ X.

Almost sure convergence and convergence in the rth mean imply convergence in probability,
and convergence in probability implies convergence in distribution. The opposite is generally
not true, see Van der Vaart (1998) p.10.

Definition 2.1.2 (Asymptotic Equivalence). Let (Xn)n∈N and (Yn)n∈N denote two se-

quences of random variables, such that |Xn − Yn|
P→ 0 for n → ∞. Then Xn and Yn

are asymptotically equivalent and we write:

Xi
.
=. Yi.

This relation is particularly useful when one is interested in the asymptotic distribution of
a sequence of random variables. Then, it is sufficient to know the asymptotic distribution
of an asymptotically equivalent sequence of random variables.

Definition 2.1.3 (Asymptotic Distribution). Let (Xn)n∈N and (Un)n∈N denote two se-
quences of random variables. Further denote F a distribution function and U a random

variable with distribution function F (we write U ∼ F ), such that Un
D→ U ∼ F . If

Xn
.
=. Un we say Xn asymptotically follows the distribution F and write:

Xn
.∼. F.

Now that basic notations and definitions have been introduced, we will continue by intro-
ducing the non-parametric model, both with and without covariates.

2.2 The Non-Parametric Model

The statistical inference procedures presented in this master’s thesis are supposed to be
derived with minimal technical assumptions. Most importantly, we wish to derive statis-
tics in a non-parametric environment, meaning we do not assume that the data has any
characteristic structure or follows a certain distribution. The only assumption we make
on the data provided is that it is at least ordinal. This allows us to examine data not
only from continuous scales, but also from discrete scales. Further, we will be examining
a one-factorial design with factor A and factor levels 1, . . . , a, also referred to as groups of
the factor A. The results presented will technically allow for unequally distributed covari-
ates between the groups, which is why we do not assume a completely randomized factorial
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(CRF) design. However, we strongly advise the user to provide for a CRF design, as unequal
distributions of the covariates among the factor levels will inevitably lead to interpretation
difficulties, see Miller and Chapman (2001). Although we will only present the calculations
for a one-factorial design, the presented results can certainly be used for more complex
factorial designs.

2.2.1 The Non-Parametric Model without Covariates

Let Xik denote the kth observation in the ith group, k = 1, . . . , ni and i = 1, . . . , a. The
total number of observations will be denoted by N =

∑a
i=1 ni. Further, let:

Fi(x) = P (Xik < x) +
1

2
P (Xik = x) (2.1)

denote the normalized version of the distribution function, first mentioned in the context of
non-parametric models by Lévy (1925). It was later used by numerous personalities, among
them Ruymgaart (1980), Akritas et al. (1997), Munzel (1999) and Gao et al. (2008), for
deriving asymptotic results for rank statistics. In the following, we will assume that:

Xik
i.i.d.∼ Fi, i = 1, . . . , a, k = 1, . . . , ni.

Thus, Xik and Xst are independent whenever i 6= s or k 6= t. In the non-parametric model,
relative treatment effects are defined as:

pi =

∫
HdFi, i = 1, . . . , a, (2.2)

where H denotes the mean distribution function, i.e. H(x) =
∑a
i=1 ωiFi(x) with weights

ωi, fulfilling ωi ≥ 0 for all i = 1, . . . , a and
∑a
i=1 ωi = 1. We will be using the unweighted

form, i.e. ωi = 1/a, discussed by Brunner and Puri (2001), Gao et al. (2008), opposed to
the weighted form using ωi = ni/N , introduced by Kruskal and Wallis (1952). Unweighted
relative treatment effects have “...the advantage of not being influenced by the allocation of
sample sizes in the data.” Gao et al. (2008) p.2575. More specifically, the hypotheses stated
on the relative treatment effects are not influenced by the allocation of sample sizes.

Relative treatment effects are of high importance in the non-parametric model, as they
can be used to uncover differences between factor levels. They can be interpreted in such
a way, that if pi < pj , then the observations from the ith group, i.e. observations from the
normalized version of the distribution function Fi, tend to be smaller than the observations
from the jth group. If the relative treatment effect pi < 1/2, then observations from the
normalized distribution function Fi tend to be smaller than observations from the mean
distribution function H, while pi > 1/2 indicates that observations from the normalized
distribution function Fi tend to be larger than observations from the mean distribution
function H.

Figure 2 shows different distribution functions and the resulting properties for the relative
treatment effects.
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Figure 2: Possible properties of relative treatment effects, pi < pj (left), pi = pj (center) and
pi > pj (right).

By comparing the normalized distribution functions of the factor levels Fi with the mean
distribution function H, paradox statements like Efron’s Dice cannot occur, see Thangavelu
and Brunner (2007). Further we will denote pairwise relative treatment effects with:

pij =

∫
FidFj , i = 1, . . . , a, j = 1, . . . , a, (2.3)

which can be very helpful when representing relative treatment effects, their corresponding
estimators, and which will be used to represent the covariance matrix of derived pivotal
quantities in a more elegant way. We observe, that the relative treatment effects pi (2.2) are
in fact a weighted sum of the pairwise relative treatment effects pij (2.3) such that:

pj =

a∑
i=1

ωipij , j = 1, . . . , a.

For more information on relative treatment effects in theory and in practice, we refer to
Brunner and Munzel (2013). We will now continue by introducing covariates to the model.

2.2.2 The Non-Parametric Model with Covariates

Covariates were introduced into the non-parametric model by Quade (1967) and thor-
oughly discussed by Langer (1998), Domhof (2001), Siemer (1999), Bathke (1998) and
Christophliemk (2001). The aim of using covariates in a non-parametric setting is to improve
the estimation of the relative treatment effects of the dependent variable, by reducing the
variation of the estimation through consideration of the covariates. As mentioned before,
regarding covariates in a non-parametric setting cannot, just as it cannot in a paramet-
ric setting, correct the dependent variable for attaining “unbiased” results, see Miller and
Chapman (2001) for details.

For denoting covariates we will introduce a further index on the observed data. Let X
(r)
ik

denote the kth replicate in the ith group of the rth covariate, i = 1, . . . , a, k = 1, . . . , ni and
r = 0, . . . , d, where r = 0 refers to the dependent variable and r = 1, . . . , d to the covariates.
Table 1 gives a comprehensive overview of the underlying data.
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Table 1: The underlying data setting when considering covariates.

Factor level Dep. variable 1st Covariate . . . dth Covariate

1 X
(0)
11 X

(1)
11 . . . X

(d)
11

1 X
(0)
12 X

(1)
12 . . . X

(d)
12

...
...

...
...

...

1 X
(0)
1n1

X
(1)
1n1

. . . X
(d)
1n1

2 X
(0)
21 X

(1)
21 . . . X

(d)
21

...
...

...
...

...

a X
(0)
ana X

(1)
ana . . . X

(d)
ana

Analogously to the non-parametric model without covariates, we denote the normalized
version of the distribution function by:

F
(r)
i (x) = P (X

(r)
ik < x) +

1

2
P (X

(r)
ik = x) (2.4)

and assume that:

(X
(0)
ik , . . . , X

(d)
ik )′

i.i.d.∼ Fi, i = 1, . . . , a, k = 1, . . . , ni.

Now X
(r)
ik and X

(u)
st are still independent whenever i 6= s or k 6= t, but may be dependent

over the indizes r and u. The covariates are therefore assumed to be random variables and
not fixed constants. In this setting, the relative treatment effects are defined as:

p
(r)
i =

∫
H(r)dF

(r)
i , i = 1, . . . , a, r = 0, . . . d, (2.5)

with the mean distribution function H(r), i.e. H(r)(x) =
∑a
i=1 ωiF

(r)
i (x) and weights ωi,

fulfilling ωi ≥ 0 for all i = 1, . . . , a and
∑a
i=1 ωi = 1. As in the non-parametric setting

without covariates, when using the unweighted form of H(r) with ωi = 1/a, the relative
treatment effects do not depend on the allocation of the sample size and will therefore be
favored over the weighted form using ωi = ni/N . The pairwise relative treatment effects are
denoted by:

p
(r)
ij =

∫
F

(r)
i dF

(r)
j , i, j = 1, . . . , a, r = 1, . . . , d, (2.6)

which can, just as in the case of no covariates, be used for a more elegant representation of

the relative treatment effects p
(r)
i . Further we denote:

Y
(r)
ik = H(r)(X

(r)
ik ), i = 1, . . . , a, k = 1, . . . , ni, r = 0, . . . , d, (2.7)

the asymptotic rank transformation of X
(r)
ik .

This notation will help us introduce a model which considers covariates in a non-parametric
setting. To adjust the dependent variable for covariates, we need some sort of connection
between the dependent variable and the covariates. This connection we will be considering
throughout this thesis is the same as can be found in Langer (1998) and Siemer (1999).
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The proposed model takes into account covariates by assuming a connection between the
covariates and the dependent variable in the asymptotic rank transformation, of the form:

Y
(0)
ik =

d∑
r=1

γ(r) · Y (r)
ik + Y regik , (2.8)

where Y regik is an unobservable random variable and γ(r), for r = 1, . . . , d, are unknown but
fixed regression parameters. This type of connection between the dependent variable and
the covariates implies a connection between the relative treatment effects of the dependent
variable and the covariate, described through the adjusted relative treatment effect, which is
given by:

p∗i = p
(0)
i −

d∑
r=1

γ(r) · p(r)
i .

It is important to state, that p∗i is not a relative treatment effect, but behaves similarly, in
a sense that differences between factor levels will result in differences between the p∗i . This
can already be seen in the fact, that the adjusted relative treatment effect is a weighted sum
of relative treatment effects which does not have to be within the interval [0, 1]. The value
p∗i cannot be interpreted in another meaningful manner, therefore solely being useful for the
testing of hypotheses.

2.3 Formulation of Hypotheses

2.3.1 Formulation of Hypotheses without Covariates

In a one-factorial design, the usual parametric approach lies in comparing the groupwise
means, denoted by µi = E(Xik), i = 1, . . . , a, to discover differences between the factor
levels. Hypotheses are therefore formulated over µ = (µ1, . . . , µa)′. In a non-parametric
model, hypotheses are often formulated over the marginal distributions of the factor levels,
F = (F1, . . . , Fa)′ (2.1) or over relative treatment effects p = (p1, . . . , pa)′ (2.2). To compare
the groupwise means, marginal distributions or relative treatment effects, so called contrast
matrix are used.

Definition 2.3.1 (Contrast matrix). A matrix C ∈ Rq×a is called contrast matrix, when
C 6= 0 and the row sums of C are equal to 0, i.e. C1a = 0.

Using a contrast matrix C, hypotheses in the parametric setting can be formulated by
H0 : Cµ = 0. In a non-parametric setting, contrast matrices are also used, but to formulate
hypotheses for the marginal distributions of the data, i.e. H0 : CF = 0, or for relative
treatment effects by H0 : Cp = 0. It can easily be seen, that if the marginal distributions
are equal, i.e. if H0 : CF = 0 is true, then the other hypotheses over the groupwise means or
the relative treatment effects also have to be true, see Brunner and Munzel (2013) p.190. The
other direction is generally not true though, see Example 1. Furthermore, the implications
H0 : Cp = 0 ⇒ H0 : Cµ = 0 and H0 : Cµ = 0 ⇒ H0 : Cp = 0 are generally not true, as
can be seen in Examples 2 and 3.

− Example 1 : Consider two groups, i.e. a=2. Assume that F1 = N(0, 1) and F2 =
N(0, 2). Then the groups have unequal marginal distributions, but equal means and
equal relative treatment effects.

− Example 2 : Consider two groups and assume that F1 = N(1, 1) and F2 = Exp(1).
Then µ1 = µ2, but p1 6= p2.
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− Example 3 : Again, consider two groups and assume that F1 = N(δ, 1) and F2 =
Exp(1). The shift parameter δ can be chosen such that p1 = p2, but in that case,
µ1 6= µ2.

When testing hypotheses under consideration of covariates, we find a similar constellation.

2.3.2 Formulation of Hypotheses with Covariates

When considering covariates in a parametric setting, hypotheses are formulated through ad-
justed population means, see Section 3.1, denoted by b∗. Hypotheses are therefore formulated
by H0 : Cb∗ = 0. In a non-parametric setting, two possibilities of formulating hypotheses
have been discussed. For developing hypotheses, Langer (1998) pp.26, 40-41 assumes equal

marginal distributions in the covariates, i.e. F
(r)
1 = · · · = F

(r)
a for all r = 1, . . . , d, and states

hypotheses over the marginal distributions of the dependent variable. The developed tests

therefore test the hypothesis H0 : CF(0) = 0, where F(0) = (F
(0)
1 , . . . , F

(0)
a )′. On the other

hand, Siemer (1999) p.25 does not assume equal marginal distributions in the covariates and
therefore develops tests for the hypothesis H0 : Cp∗ = 0, where p∗ = (p∗1, . . . , p

∗
a)′. In fact,

both Langer (1998) and Siemer (1999) see in this hypothesis the only reasonable hypothesis
when confronted with unequal marginal distributions in the covariates. The multiple con-
trast test procedures derived in this thesis will also test for the hypothesis H0 : Cp∗ = 0, but
because we would like to provide for confidence intervals for the adjusted relative treatment
effects, which can be used for testing hypotheses. This is not possible when formulating the
hypothesis over the marginal distributions of the dependent variable. The advantage of al-
lowing for unequal marginal distributions in the covariates when formulating the hypotheses
over the adjusted treatment effects will be technically allowed, but treated with caution, as
interpretation difficulties will arise when such covariates are used.

The connection between the hypothesis for the parametric setting H0 : Cb∗ = 0 and the
hypothesis for the non-parametric setting H0 : Cp∗ = 0 is not as clear as it was in the
case without covariates. The most simple connection between the two hypotheses is given,
when the covariates have no influence on the dependent variable. In this special case, the
regression parameters of the parametric and the non-parametric model are all equal to 0,
and the hypotheses are related to each other as if no covariates were involved. As soon
as the covariates have an influence on the dependent variable, it becomes very difficult to
compare these two hypothesis, because the regression parameters for the linear dependency
between the covariates and the dependent variable calculated in the parametric setting and
in the non-parametric setting are very different from each other. The relation between the
regression parameters from the non-parametric model and the parametric model though, is
crucial for deriving implications between the two corresponding hypotheses. The only state-
ment which can surely be made is that if the covariates have equal marginal distributions,
then sufficient differences between the factor levels will subsequently lead to a rejection of
both hypotheses. For equal marginal distributions of the covariates and if H0 : CF = 0 is
true, then the hypotheses H0 : Cb∗ = 0 and H0 : Cp∗ = 0 are also true, see Langer (1998)
p.41. This again shows how important equal marginal distributions of the covariates are for
attaining interpretable results.

We will now continue by showing how the adjusted treatment effects can be estimated
and derive test statistics for testing the mentioned hypotheses. Estimating p∗i amounts to
two steps. In the first step, the relative treatment effects of the dependent variable and
the covariates (2.5) are estimated for r = 0, . . . , d and i = 1, . . . , a. In a second step, the



2 PRELIMINARIES 11

unknown regression parameters γ(r) are estimated for r = 1, . . . , d.

2.4 Estimation of the Relative Treatment Effects

Until now we have been working with non-observable random variables Y
(r)
ik for i = 1, . . . , a,

k = 1, . . . , ni and r = 0, . . . , d, from the asymptotic rank transformation (2.7), and unknown
regression parameters γ(1), . . . , γ(d) originating from the underlying model (2.8). Now we

will introduce estimators for the relative treatment effects when considering covariates, p
(r)
i ,

for r = 0, . . . , d and i = 1, . . . , a, defined in (2.5). The main idea when deriving estimators
for relative treatment effects lies in replacing the unknown normalized distribution functions

F
(r)
i (x), defined in (2.4), with their empirical counterpart:

F̂
(r)
i (x) =

1

ni

ni∑
k=1

c(x−X(r)
ik ), i = 1, . . . , a, r = 0, . . . , d,

the empirical cumulative distribution function, where c(y) = 1{y>0} + 1
2 · 1{y=0}. Using the

empirical cumulative distribution function, we can approximate the non-observable random

variables Y
(r)
ik through the so called rank transformation:

Ŷ
(r)
ik = Ĥ(r)(X

(r)
ik ) =

a∑
j=1

ωjF̂
(r)
j (X

(r)
ik ), i = 1, . . . , a, k = 1, . . . , ni, (2.9)

with weights ωj as described in Section 2.2.2. Apart from the representation through the
empirical cumulative distribution function, there also exist rank representations for the
values from the rank transformation. In non-parametric literature, results are often derived
by using a rank notation for the observations. Therefore, we will briefly present how the
rank transformation and ranks of observations are interconnected. To denote the values
from the rank transformation using mean ranks, let us introduce a mean rank notation.

− The mean rank of observation X
(r)
ik within the rth covariate is denoted by:

R
(r)
ik =

1

2
+

a∑
s=1

ns∑
t=1

c
(
X

(r)
ik −X

(r)
st

)
.

− The mean rank of observation X
(r)
ik within the rth covariate, but without the jth factor

level is denoted by:

R
(r)
ik (−j) =

1

2
+

a∑
s6=j

ns∑
t=1

c
(
X

(r)
ik −X

(r)
st

)
.

− The mean rank of observation X
(r)
ik within the rth covariate, but only within the ith

factor level is denoted by:

R
(r)
ik (i) =

1

2
+

ns∑
t=1

c
(
X

(r)
ik −X

(r)
it

)
.

− The mean rank of observation X
(r)
ik within the rth covariate, but only within the jth

and ith factor level is denoted by:

R
(r)
ik (ij) =

1

2
+

nj∑
t=1

c
(
X

(r)
ik −X

(r)
jt

)
+

ni∑
t=1

c
(
X

(r)
ik −X

(r)
it

)
.
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Through this notation of the mean ranks of observations, we attain a mean rank notation

for the rank transformation Ŷ
(r)
ik , by:

Ŷ
(r)
ik = ωi

1

ni

(
R

(r)
ik (i)− 1

2

)
+

a∑
j 6=i

ωj
1

nj

(
R

(r)
ik −R

(r)
ik (−j)

)
, i = 1, . . . , a, k = 1, . . . , ni.

Using the cumulative distribution function, estimators for the relative treatment effects are
given by:

p̂
(r)
j =

∫
Ĥ(r)dF̂

(r)
j =

a∑
i=1

ωi · p̂(r)
ij , j = 1, . . . , a, r = 0, . . . , d, (2.10)

where p̂
(r)
ij =

∫
F̂

(r)
i dF̂

(r)
j = 1/nj

∑nj

k=1 F̂
(r)
i (X

(r)
jk ) is an estimator for the pairwise relative

treatment effects defined in (2.6). It is also possible to notate the estimators for the relative
treatment effects using the mean ranks notation. It holds that:

p̂
(r)
j =

a∑
i=1

ω
(r)
i ·

1

ni

(
R

(r)

j· (ij)− nj + 1

2

)
and p̂

(r)
ij =

1

ni

(
R

(r)

j· (ij)− nj + 1

2

)
.

The estimator p̂
(r)
j has been shown to be unbiased and consistent for estimating p

(r)
j .

Theorem 2.4.1. Let p̂
(r)
j and p

(r)
j be as defined in (2.10) and (2.5), respectively. If N →∞

such that N/ni ≤ N0 <∞ for a N0 ∈ N, then:

E
(
p̂

(r)
j

)
= p

(r)
j and E

(
(p̂

(r)
j − p

(r)
j )2

)
→ 0 for j = 1, . . . , a.

Proof. The theorem can be proven analogously to Proposition 4.7 from Brunner and Munzel
(2013) p.180. We will prove the unbiasedness of the estimator, to demonstrate how the
additional index for the covariates is added.

E
(
p̂

(r)
j

)
= E

(∫
Ĥ(r)dF̂

(r)
j

)
= E

(
a∑
i=1

∫
ωiF̂

(r)
i dF̂

(r)
j

)

=

a∑
i=1

E

(
1

nj

nj∑
k=1

ωiF̂
(r)
i (X

(r)
jk )

)
=

a∑
i=1

1

nj

nj∑
k=1

ωiE
(
F̂

(r)
i (X

(r)
jk )
)

=

a∑
i=1

1

nj

nj∑
k=1

ωiE

(
1

ni

ni∑
l=1

c(X
(r)
jk −X

(r)
il )

)

=

a∑
i=1

1

nj

nj∑
k=1

ωi
1

ni

ni∑
l=1

E
(
c(X

(r)
jk −X

(r)
il )
)

=

a∑
i=1

1

nj

nj∑
k=1

ωi

∫
F

(r)
i dF

(r)
j =

a∑
i=1

1

nj

nj∑
k=1

ωip
(r)
ij =

a∑
i=1

ωip
(r)
ij = p

(r)
j

For further details on the estimation of relative treatment effects, their representation with
mean ranks and their properties, as well as the subject of pseudo ranks, we refer to Brunner
and Munzel (2013) and Gao et al. (2008). Now that we have appropriate estimators for
the relative treatment effects, it remains to find estimators for the regression parameters
γ(1), . . . , γ(r).
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2.5 Estimation of the Regression Parameters

The basis for our estimation of the regression parameters is equation (2.8). Using this equa-
tion, a natural way of estimating the constants γ(r), for r = 1, . . . , d, would be a linear
regression. The only problem with directly performing a linear regression is that, contrarily
to a usual linear regression, no intercept is specifically stated, but instead the intercept is
hidden within the terms of the asymptotic rank transformation. Therefore we will perform
a linear regression on the mean adjusted form of (2.8). Langer (1998) also uses a mean ad-
justed form for the estimation of the regression parameters γ(r), but assumes equal marginal

distributions of the covariates, i.e. F
(r)
i = F (r), i = 1, . . . , a, for all r = 1, . . . , d. The valid-

ity of this assumption and the consequences for the null hypothesis have been thoroughly
discussed by Langer (1998) pp.40-41. A different approach using an adjusted means regres-
sion was given by Siemer (1999), who does not assume equal marginal distributions within
the covariates. This setting was also shortly discussed by Bathke and Brunner (2003), who
give a different possibility from the estimation proposed by Langer (1998) for adjusting the
regression model, to cope with unequal marginal distributions within the covariates. We
will not assume equal marginal distributions within the covariates and therefore use a mean
adjusted regression model as can be found in Bathke and Brunner (2003).

Taking (2.8), we can transfer the model into the mean adjusted form:

Y
(0)
ik =

d∑
r=1

γ(r) · Y (r)
ik + Y regik

⇒ Y
(0)
ik − Y

(0)

i· =

d∑
r=1

γ(r) · (Y (r)
ik − Y

(r)

i· ) + (Y regik − Y regi· ).

Because Y
(r)
ik are non-observable random variables, we will approximate the values from the

asymptotic rank transformation with corresponding values from the rank transformation

Ŷ
(r)
ik defined in (2.9). Having done this, the least squares estimator for γ = (γ(1), . . . , γ(d))′

is given by:
γ̂ = (X̂′X̂)−1X̂′ŷ, (2.11)

where X̂ and ŷ denote:

X̂ =


Ŷ

(1)
11 − Ŷ

(1)

1· . . . Ŷ
(d)
11 − Ŷ

(d)

1·

Ŷ
(1)
12 − Ŷ

(1)

1· . . . Ŷ
(d)
12 − Ŷ

(d)

1·
...

. . .
...

Ŷ
(1)
ana − Ŷ

(1)

a· . . . Ŷ
(d)
ana − Ŷ

(d)

a·

 and ŷ =


Ŷ

(0)
11 − Ŷ

(0)

1·

Ŷ
(0)
12 − Ŷ

(0)

1·
...

Ŷ
(0)
ana − Ŷ

(0)

a·

 . (2.12)

In the following, we will further denote the non-empirical counterparts of X̂ and ŷ as X and
y, respectively. When introducing the non-parametric model with covariates, we noticed
that the covariates are assumed to be random variables and not fixed values. Therefore,
the regressors within X̂ are random variables and we need a conditional assumption on the
residuals, i.e. Y regik − Y regi· , to justify this approach.
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For a consistent estimation of γ we make the following technical assumptions:

(A1) There exists a number N0 ∈ N such that N
ni
≤ N0 <∞ for all i = 1, . . . , a.

(A2) E
(
Y regik − Y regi· | X = x

)
= 0 for all i = 1, · · · , a, k = 1, · · · , ni.

(A3) Let λmin be the smallest eigenvalue of the matrix 1
NX′X. Then there exists a constant

κ0 such that λmin ≥ κ0 > 0 almost surely for all N ∈ N.

Using these technical assumptions, we are able to prove the consistency of our estimator γ̂
for the regression parameters.

Theorem 2.5.1. Under the assumptions (A1)-(A3) and as N →∞ it holds that:

γ̂
P→ γ

Proof. For a detailed proof see Langer (1998) Lemma 4.6-4.7 and Theorem 4.8, as well as
Siemer (1999) p.59.

Note that every time γ has to be estimated for one of the upcoming test statistics, the
assumptions (A1)-(A3) have to apply. By plugging in the estimator γ̂ = (γ̂(1), . . . , γ̂(d))′

for γ, we attain estimators for the adjusted relative treatment effects p∗i given by:

p̂∗i = p̂
(0)
i −

d∑
r=1

γ̂(r)p̂
(r)
i , i = 1, . . . , a.

These estimators will be the basis for the upcoming simultaneous inference.

2.6 Properties of the Adjusted Relative Treatment Effects

From the previous section we have attained an estimator for the adjusted relative treatment
effects, given by:

p̂∗i = p̂
(0)
i −

d∑
r=1

γ̂(r)p̂
(r)
i , i = 1, . . . , a, (2.13)

where definition and properties of the estimators for the regression parameters γ̂(1), . . . , γ̂(d)

are given in Section 2.5, and definition and properties of the estimators for the relative

treatment effects p̂
(r)
i , i = 1, . . . , a and r = 0, . . . , d, are given in Section 2.4.

This estimator, for the adjusted relative treatment effect, can be shown to be asymptot-
ically unbiased and consistent.

Lemma 2.6.1. Under the assumption (A1), i.e. N/ni ≤ N0 < ∞ for some N0 ∈ N, and
for N →∞ it holds that:

E(p̂∗i )→ E(p∗i ) and p̂∗i
P→ p∗i for i = 1, . . . , a (2.14)

Proof. From (2.5.1) and (2.4.1) we know that:

p̂
(r)
i

P→ p
(r)
i and γ̂(r) P→ γ(r).
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By Slutsky’s theorem it follows that γ̂(r)p̂
(r)
i

D→ γ(r)p
(r)
i . However, because p

(r)
i and γ(r) are

constants it follows that γ̂(r)p̂
(r)
i

P→ γ(r)p
(r)
i . Then:

p̂∗i = p̂
(0)
i −

d∑
r=1

γ̂(r)p̂
(r)
i

P→ p
(0)
i −

d∑
r=1

γ(r)p
(r)
i = p∗i

With Portmanteau (7.1.2) it immediately follows that p̂∗i is asymptotically unbiased.

The most important remark which has to be made when interpreting p̂∗i is, that it is not
an estimator for the relative treatment effect of the dependent variable. Instead, it is a
consistent and asymptotically unbiased estimator for the relative treatment effect of the de-
pendent variable, shifted by a part influenced through the covariates. The estimator for the
adjusted relative treatment effects p̂∗i can be interpreted in the same manner as the estimator
for the relative treatment effects of the dependent variable when not regarding covariates,
p̂i, in a sense, that the relative asymptotic comparison of the factor levels is given by both
estimators. This means that differences between p̂∗i and p̂∗j can be interpreted as differences
between the factor levels i and j of the dependent variable, but it is not possible to interpret
the estimator p̂∗i as a relative treatment effect. For more details on the interpretation on
the estimators for the shifted relative treatment effects we refer to Langer (1998) p.25.

Since an estimator which can be interpreted as a relative treatment effect would be highly
desirable, we will give thoughts on a possible estimator further in this thesis, in Section 3.6.
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3 Simultaneous Inference

In the literature, several procedures for testing with covariates in a non-parametric environ-
ment have been developed. Taking an arbitrary contrast matrix C ∈ Rs×a Langer (1998)
derives two test statistics for the hypothesis H0 : CF(0) = 0, a Wald-Type statistic and an
ANOVA-Type statistic. Siemer (1999) then uses this as a basis for developing Wald-Type
and ANOVA-Type test statistics for the hypothesis H0 : Cp∗ = 0, which becomes neces-
sary, because unlike Langer (1998), Siemer (1999) does not assume equal distributions of
the covariates between the groups. Christophliemk (2001) decided to take the test statistics
proposed by Siemer (1999) and improve these using transformation methods on the relative
treatment effects.

In addition to some of the existing test statistics, we would like to develop a further test
statistic based on the work of Konietschke et al. (2012a). This test, for the hypothesis
H0 : Cp∗ = 0, will be a multiple contrast test procedure, giving us the ability not only to
say if there is a group effect, but additionally also where this group effect can be observed,
without having to perform post-hoc analysis.

Before we do so, we briefly introduce the parametric ANCOVA, the parametric multiple
contrast test procedures and the methods used by Siemer (1999), as these will be compared
to the newly derived multiple contrast test procedure in an extensive simulation study.

3.1 Parametric ANCOVA

The ANCOVA is an extension of the well-known ANOVA, which tests for differences between
blocks of observations, by a regression parameter. It is well described in Timm (1975),
Huitema (1980), Kirk (1982), Seber (1977) and many other works. The described model in
Timm (1975) pp.471-474 is given by:

X(0) = M1b︸ ︷︷ ︸
ANOVA component

+ M2β︸ ︷︷ ︸
Linear regression component

+ ε︸︷︷︸
Error term

, (3.1)

where the components of this model are given by:

− The dependent variable X(0) = (X
(0)
11 , X

(0)
12 , · · · , X

(0)
ana)′

− The design matrix M1 =
a⊕
i=1

1ni

− The parameter vector of factor level means b = (µ1, . . . , µa)′

− The regressor matrix M2 =


X

(1)
11 · · · X

(d)
11

X
(1)
12 · · · X

(d)
12

...
. . .

...

X
(1)
ana · · · X

(d)
ana


− The vector of regression parameters β = (β1, · · · , βd)′

− The error term ε = (ε11, ε12, · · · , εana)′ ∼ N(0, σ2 · IN ).
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Contrarily to our model assumptions, Timm (1975) states that the covariates need to be fixed
and continuous values. While it is possible to cope with random covariates by stating condi-
tional assumptions on the residuals, i.e. E (ε|M2 = m2) = 0 and Cov (ε|M2 = m2) = σ2·IN ,
we will not do so, to avoid unforeseen consequences for the interpretation of the adjusted
population means. Therefore the multiple contrast test procedures will be compared to the
model as explained in Timm (1975), which assumes continuous fixed observed variables as
covariates. The aim of the ANCOVA model described is to test for differences between the
levels of the adjusted population means, given by b∗ = b− (M′

1M1)−1M′
1M2β. As long as

the upper assumptions and the conditions that M′
1M1 and M′

2M2 are regular are fulfilled,
we attain estimators for β, b, the adjusted population means b∗ and σ2 through (3.2), (3.3),
(3.4) and (3.5), respectively.

β̂ = (M′
2 (IN − JM ) M2)

−1
M′

2 (IN − JM ) X(0) with JM = M1(M′
1M1)−1M′

1 (3.2)

b̂ = (M′
1M1)−1M′

1X
(0) (3.3)

b̂∗ = b̂− (M′
1M1)−1M′

1M2β̂ = (M′
1M1)−1M′

1(X(0) −M2β̂) (3.4)

σ̂2 =
(
X(0)′ (IN − JM ) X(0) − β̂

′
M′

2(IN − JM )M2β̂
)
/f (3.5)

where f = N − rank(M1)− rank(M2)

Using these estimators, we can attain test statistics for testing the hypothesis H0 : Cb∗ = 0,
where C denotes an arbitrary contrast matrix. Timm (1975) p.474 further shows that with:

S = Var
[
b̂∗
]

= σ2
[
(M′

1M1)
−1

+ (M′
1M1)

−1
M′

1M2 (M′
2(IN − JM )M2)

−1
M′

2M1 (M′
1M1)

−1
]

QT = b̂∗′C′(CSC′)−Cb̂∗

Following equation holds:

TT =
QT /g

σ̂2

H0∼ F (g, f), (3.6)

where g = rank(C) and f = N−rank(M1)−rank(M2). The test statistics TT , as one of the
most widely spread test statistics for statistical inference with covariates, will be compared
to the multiple contrast test procedure in terms of α-level and power.

3.2 Parametric Multiple Contrast Test Procedures

Additionally to the parametric ANCOVA, multiple contrast test procedures exist for the
parametric setting given in (3.1). These procedures allow not only for testing the global
hypothesis H0 : Cb∗ = 0, but also for investigating between which groups differences occur,
without having to perform post-hoc tests. A simultaneous test procedure for general linear
models, and thus for the parametric ANCOVA, was developed by Hothorn et al. (2008).
The procedure assumes an underlying semi-parametric model:

M = ((X1, . . . , Xn),θ, τ) ,

with a fixed but unknown parameter θ ∈ Rp and other random (or nuisance) parameters

τ . Further it is required, that if θ̂n is an estimator for θ and Sn an estimator for Cov(θ̂n),
then following equation has to hold:

a1/2
n (θ̂n − θ)

D→ N(0,Φ),
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for some multivariate central limit theorem and some positive non-decreasing sequence

(an)n∈N, such that anSn
P→ Φ. Under these assumptions, Hothorn et al. (2008) develop

simultaneous test procedures for the hypothesis H0 : Cθ = 0 through a test statistic:

TH = D−1/2
n (θ̂n − θ)

D→ N(0,R), (3.7)

where Dn = diag(CSnC′). Then the components of the test statistic TH are asymptoti-
cally N(0, 1) distributed, and a testing procedure is conceived by estimating the unknown
correlation matrix R and using appropriate critical values from the multivariate normal
distribution, a similar approach as we will follow when deriving the multiple contrast test
procedures in this thesis, derived in Section 3.5. For more information on the technical
details of the procedure, we refer to Hothorn et al. (2008).

The implementation developed by Hothorn et al. (2008) is given in statistics program R,
with the multcomp package. This package contains a function glht which can be used as a
wrapper for many functions treating general linear models in R, among them the function
aov, which allows for global inference in the parametric ANCOVA model. Since our upcom-
ing simulation study is conducted in R, we will use the function aov for statistical inference,
and the wrapper glht to allow for simultaneous inference. The procedure can be applied by
calling following functions in R:

1 ancova<−aov ( X0 ∼ group+X1 , data=datalm )
2 result<−g lh t ( ancova , linfct=mcp ( group= ‘ ‘Tukey ’ ’ ) )

where datalm is an appropriate data frame containing the data, X0 refers to the dependent
variable, group refers to a group variable employed as a factor and X1 refers to a covariate.
The result from the simultaneous inference will then be compared to the multiple contrast
test procedure for the non-parametric setting, derived in Section 3.5. For more details on
the implementation of the simultaneous test procedures, as well as examples, we refer to
Hothorn et al. (2008).

3.3 Wald-Type Statistic

One of the methods we will be comparing the multiple contrast test procedures to is the non-
parametric approach using a Wald-type statistic proposed, by Siemer (1999). The reason
we do not compare the Wald-type statistic of Langer (1998) with the multiple contrast
test procedure, is that Langer (1998) tests a different hypothesis, namely H0 : CF(0) = 0
opposed to Siemer (1999), who tests for the hypothesis H0 : Cp∗ = 0, the same hypothesis
which is tested by the multiple contrast test procedure. For this denote:

ΛN = Cov

(
√
N

(∫
H(r)dF̂(r) −

∫
F(r)dĤ(r)

)
r=0,...,d

)
, (3.8)

where F̂(r) = (F̂
(r)
1 , . . . , F̂

(r)
a )′ and F(r) = (F

(r)
1 , . . . , F

(r)
a )′. Furthermore denote:

VN = (γ′ ⊗ Ia) ·ΛN · (γ ⊗ Ia). (3.9)

A detailed description on estimating VN can be found in in the upcoming Section 3.5.1. For
the Wald-type statistic proposed to work properly, following technical assumptions have to
hold:
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(A1) - (A3) For estimating the regression coefficients.

(A4) The matrix VN → V such that rank(VN ) = rank(V) for all N ≥ N0 ∈ N.

(A5) Let θ
(r)
N,i, i = 1, . . . , a and r = 1, . . . , d, denote the eigenvalues of ΛN . Then Nθ

(r)
N,i → 0

or Nθ
(r)
N,i →∞ for all i = 1, . . . , a and r = 1, . . . , d.

Under these assumptions, Siemer (1999) pp.54-55 shows that under H0 : Cp∗ = 0 following
equation holds:

QWTS = N p̂∗′C′(CV̂NC)−Cp̂∗
.∼. χ2

f̂
, (3.10)

with f̂ = rank(CV̂N ). For a full proof we refer to Siemer (1999) Theorem 4.20.

3.4 ANOVA-Type Statistic

The following ANOVA-type statistic proposed by Siemer (1999) is supposed to perform
better for smaller sample sizes than the Wald-type statistic. For this we define a matrix
K = C′(CC′)−C. Instead of estimating the complete matrix (CV̂NC)−, the ANOVA-type

statistic only requires the traces of the matrices KV̂N and KV̂NKV̂N to be estimated.
Using the so called Box-approximation Box (1954), we are then able to construct a test
statistic for the hypothesis H0 : Cp∗ = 0.

When constructing the ANOVA-type statistic, we first reformulate our hypothesis.

Lemma 3.4.1. Let K = C′(CC′)−C and U denote an arbitrary vector of appropriate size.
Then the hypotheses H0 : CU = 0 and H0 : KU = 0 are equivalent.

Proof. For a detailed proof see Langer (1998), Lemma 5.2.

Under the assumptions (A1)-(A5) and additionally:

(A6) For all N there exists a c0 ∈ R such that: tr(KV̂N ) =
a∑
i=1

λi ≥ c0 > 0, where λ1, . . . , λa

are the eigenvalues of KV̂N ,

Siemer (1999) pp.56-59 shows, that under H0 : Cp∗ = 0 following equation holds:

QN = f̂
N p̂∗′Kp̂∗

tr
(
KV̂N

) .∼. χ2
f̂
, (3.11)

with f̂ = tr(KV̂N )2

tr(KV̂NKV̂N )
. Both test procedures were implemented in R and will be compared

to the multiple contrast test procedure.

3.5 Multiple Contrast Test Procedures

We will now commence with deriving multiple contrast test procedures (MCTP) for the
non-parametric setting including covariates. Multiple contrast test procedures are simulta-
neous test procedures, which allow for simultaneously testing multiple contrasts. As we have
already mentioned in the introduction, the aim of MCTP is to not only provide a testing
procedure for global hypotheses, but additionally make post-hoc tests, such as the Bon-
ferroni or Bonferroni-Holm correction, unnecessary, by considering dependencies between
individual hypotheses and providing for adjusted p-values of the individual hypotheses.
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The main motivation for the MCTP in this thesis comes from Konietschke et al. (2012a),
where MCTP for relative treatment effects are derived without covariates. The key in
providing for MCTP lies in deriving asymptotic distribution properties of the estimator
p̂∗ = (p̂∗1, . . . , p̂

∗
a)′. More specifically, we will commence by proving that the pivotal quantity√

N(p̂∗ −p∗) asymptotically follows a multivariate normal distribution with mean vector 0
and covariance matrix VN , i.e.:

√
N(p̂∗ − p∗)

.∼. N(0,VN ).

Using this result, we will then derive a simultaneous test procedure. To simplify the calcu-
lations in this section, we will calculate asymptotic results by assuming that γ is known.

For a more elegant representation of the upcoming equations, we further set γ(0) = −1.
Then it holds, that:

√
N(p̂∗ − p∗) =

√
N


p̂

(0)
1 −

d∑
r=1

p̂
(r)
1 γ(r) − (p

(0)
1 −

d∑
r=1

p
(r)
1 γ(r))

...

p̂
(0)
a −

d∑
r=1

p̂
(r)
a γ(r) − (p

(0)
a −

d∑
r=1

p
(r)
a γ(r))

 (3.12)

=
√
N


p̂

(0)
1 − p

(0)
1

...

p̂
(0)
a − p(0)

a

−√N d∑
r=1


p̂

(r)
1 − p

(r)
1

...

p̂
(r)
a − p(r)

a

 γ(r)

= −
√
N

d∑
r=0


p̂

(r)
1 − p

(r)
1

...

p̂
(r)
a − p(r)

a

 γ(r).

To continue our calculations we need a result from non-parametric theory.

Theorem 3.5.1 (Asymptotic Equivalence). Let X
(r)
i1 , . . . , X

(r)
ini

be the observations from the

rth covariate, r = 0, . . . , d in the ith group, i = 1, . . . , a. Then, assuming that X
(r)
ik and X

(r)
il

are independent for k 6= l, following equation holds for r = 0, . . . , d:

√
N
(
p̂

(r)
j − p

(r)
j

)
.
=.
√
N

a∑
i=1

ωiZ
(r)
ij , (3.13)

where the unweighted form is given by ωi = 1/a, and:

Z
(r)
ij =

1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk )− 1

ni

ni∑
k=1

F
(r)
j (X

(r)
ik ) + 1− 2p

(r)
ij .

Proof. By adding an index r to the mean distribution functions, Brunner and Munzel (2013)
p.192 prove that:

√
N

∫
Ĥ(r)d

(
F̂

(r)
j − F (r)

j

)
.
=.
√
N

∫
H(r)d

(
F̂

(r)
j − F (r)

j

)
j = 1, . . . , a, r = 0, . . . , d.
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Following Brunner and Munzel (2013) p.210 and Konietschke et al. (2012a) it follows that:

√
N
(
p̂

(r)
j − p

(r)
j

)
.
=.
√
N

(∫
H(r)dF̂

(r)
j + 1−

∫
F

(r)
j dĤ(r) − 2

∫
H(r)dF

(r)
j

)
=
√
N

(∫ a∑
i=1

ωiF
(r)
i dF̂

(r)
j −

∫
F

(r)
j d

(
a∑
i=1

ωiF̂
(r)
i

)
+ 1− 2p

(r)
j

)

=
√
N

a∑
i=1

ωi

(∫
F

(r)
i dF̂

(r)
j −

∫
F

(r)
j dF̂

(r)
i + 1− 2p

(r)
ij

)

=
√
N

a∑
i=1

ωi

(
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk )− 1

ni

ni∑
k=1

F
(r)
j (X

(r)
ik ) + 1− 2p

(r)
ij

)

=
√
N

a∑
i=1

ωiZ
(r)
ij

Using Theorem (3.5.1) we attain:

−
√
N

d∑
r=0


p̂

(r)
1 − p

(r)
1

...

p̂
(r)
a − p(r)

a

 γ(r) .=. −
√
N

d∑
r=0


a∑
i=1

ωiZ
(r)
i1

...
a∑
i=1

ωiZ
(r)
ia

 γ(r),

so we attain random variables which are asymptotically equivalent to the pivotal quantity we
are examining. This approach bears the advantage, that instead of examining the asymptotic
properties of the pivotal quantity

√
N(p̂∗−p∗), we are now able to examine the asymptotic

distribution of the asymptotically equivalent term instead, as the asymptotic distributions
will be the same. Using the asymptotic equivalence from (3.13), the covariance matrix of
the asymptotically equivalent variable is given by:

VN = Cov

[


d∑
r=0

γ(r)
√
N

a∑
i=1

ωiZ
(r)
i1

...
d∑
r=0

γ(r)
√
N

a∑
i=1

ωiZ
(r)
ia


]

= Cov

[√
N · Ia ⊗ (γ(0), . . . , γ(d)) ·



a∑
i=1

ωiZ
(0)
i1

...
a∑
i=1

ωiZ
(d)
i1

a∑
i=1

ωiZ
(0)
i2

...
a∑
i=1

ωiZ
(d)
ia



]
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= Cov

[√
N · Ia ⊗ (γ(0), . . . , γ(d))︸ ︷︷ ︸

=γ′

· Iad ⊗ (ω1, . . . , ωa)︸ ︷︷ ︸
=:W

·



Z
(0)
11
...

Z
(0)
a1

Z
(1)
11
...

Z
(d)
a1

Z
(0)
12
...

Z
(d)
aa


︸ ︷︷ ︸

=:Z

]

= (Ia ⊗ γ′) ·W · Cov[
√
NZ]︸ ︷︷ ︸

=:ΣN

·W′ · (Ia ⊗ γ′)′. (3.14)

Now the main task for calculating VN lies in calculating Cov(
√
NZ) = ΣN . For this, let

us compute the pairwise covariances for all possible indizes, Cov
(
Z

(r)
ij , Z

(u)
st

)
. From Section

2.2.2 we remember that X
(r)
ik and X

(u)
jl are independent if i 6= j or if k 6= l, and X

(r)
ik

i.i.d.∼ F
(r)
i

for k = 1, . . . , ni. Using these properties, we attain:

Cov
(
Z

(r)
ij , Z

(u)
st

)
=Cov

(
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk )− 1

ni

ni∑
k=1

F
(r)
j (X

(r)
ik ) ,

1

nt

nt∑
k=1

F (u)
s (X

(u)
tk )− 1

ns

ns∑
k=1

F
(u)
t (X

(u)
sk )

)

=Cov

(
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk ) ,

1

nt

nt∑
k=1

F (u)
s (X

(u)
tk )

)

− Cov

(
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk ) ,

1

ns

ns∑
k=1

F
(u)
t (X

(u)
sk )

)

− Cov

(
1

ni

ni∑
k=1

F
(r)
j (X

(r)
ik ) ,

1

nt

nt∑
k=1

F (u)
s (X

(u)
tk )

)

+ Cov

(
1

ni

ni∑
k=1

F
(r)
j (X

(r)
ik ) ,

1

ns

ns∑
k=1

F
(u)
t (X

(u)
sk )

)

=
1

nj

nj∑
k=1

1

nt

nt∑
l=1

Cov
(
F

(r)
i (X

(r)
jk ) , F (u)

s (X
(u)
tl )

)
− 1

nj

nj∑
k=1

1

ns

ns∑
l=1

Cov
(
F

(r)
i (X

(r)
jk ) , F

(u)
t (X

(u)
sl )

)
− 1

ni

ni∑
k=1

1

nt

nt∑
l=1

Cov
(
F

(r)
j (X

(r)
ik ) , F (u)

s (X
(u)
tl )

)
+

1

ni

ni∑
k=1

1

ns

ns∑
l=1

Cov
(
F

(r)
j (X

(r)
ik ) , F

(u)
t (X

(u)
sl )

)
︸ ︷︷ ︸

=0 for i 6=s or k 6=l
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=
1

n2
j

nj∑
k=1

[
Cov

(
F

(r)
i (X

(r)
jk ), F (u)

s (X
(u)
jk )

)
· 1{j=t}

− Cov
(
F

(r)
i (X

(r)
jk ), F

(u)
t (X

(u)
jk )

)
· 1{j=s}

]
− 1

n2
i

ni∑
k=1

[
Cov

(
F

(r)
j (X

(r)
ik ), F (u)

s (X
(u)
ik )

)
· 1{i=t}

− Cov
(
F

(r)
j (X

(r)
ik ), F

(u)
t (X

(u)
ik )

)
· 1{i=s}

]
=

1

nj

[
Cov

(
F

(r)
i (X

(r)
j1 ), F (u)

s (X
(u)
j1 )

)
· 1{j=t}

− Cov
(
F

(r)
i (X

(r)
j1 ), F

(u)
t (X

(u)
j1 )

)
· 1{j=s}

]
− 1

ni

[
Cov

(
F

(r)
j (X

(r)
i1 ), F (u)

s (X
(u)
i1 )

)
· 1{i=t}

− Cov
(
F

(r)
j (X

(r)
i1 ), F

(u)
t (X

(u)
i1 )

)
︸ ︷︷ ︸

=:θ
(r,u)
jit

·1{i=s}
]

=
1

nj

(
θ

(r,u)
ijs · 1{j=t} − θ

(r,u)
ijt · 1{j=s}

)
− 1

ni

(
θ

(r,u)
jis · 1{i=t} − θ

(r,u)
jit · 1{i=s}

)
.

Using the upper calculations, all possible index combinations are listed in the following table:

For i = j ∨ t = s : Cov
(
Z

(r)
ij , Z

(u)
st

)
= 0

For (i 6= j ∧ t 6= s) ∧ (j = t ∧ i = s) : Cov
(
Z

(r)
ij , Z

(u)
st

)
=

1

nj
θ

(r,u)
ijs +

1

ni
θ

(r,u)
jit

For (i 6= j ∧ t 6= s) ∧ (j = s ∧ i = t) : Cov
(
Z

(r)
ij , Z

(u)
st

)
= − 1

nj
θ

(r,u)
ijt −

1

ni
θ

(r,u)
jis

For (i 6= j ∧ t 6= s) ∧ (j 6= s, t ∧ i = t) : Cov
(
Z

(r)
ij , Z

(u)
st

)
= − 1

ni
θ

(r,u)
jis

For (i 6= j ∧ t 6= s) ∧ (j 6= s, t ∧ i = s) : Cov
(
Z

(r)
ij , Z

(u)
st

)
=

1

ni
θ

(r,u)
jit

For (i 6= j ∧ t 6= s) ∧ (j = t ∧ i 6= s, t) : Cov
(
Z

(r)
ij , Z

(u)
st

)
=

1

nj
θ

(r,u)
ijs

For (i 6= j ∧ t 6= s) ∧ (j = s ∧ i 6= s, t) : Cov
(
Z

(r)
ij , Z

(u)
st

)
= − 1

nj
θ

(r,u)
ijt

For (i 6= j ∧ t 6= s) ∧ (j 6= s, t ∧ i 6= s, t) : Cov
(
Z

(r)
ij , Z

(u)
st

)
= 0.

We have now successfully calculated the covariance matrix ΣN , by calculating the covari-

ances of Z
(r)
ij and Z

(u)
st for all possible index combinations, and therefore the covariance

matrix VN = (Ia ⊗ γ′) ·W ·ΣN ·W′ · (Ia ⊗ γ′)′. It remains to show the asymptotic multi-
variate normality of the pivotal quantity

√
N(p̂∗−p∗) and conclude the connection to VN .

This is done in the following theorem.
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Theorem 3.5.2. Let VN be as given in the upper calculation. Under the assumptions
(A1), i.e. there exists N0 ∈ N such that N

ni
≤ N0 <∞ for i = 1, . . . , a, and that VN → V

such that rank(VN ) = rank(V) ≥ 1 for all N ≥ M0 < ∞ is fulfilled, the rank statistic√
N(p̂∗ − p∗) asymptotically follows a multivariate normal distribution with expectation 0

and covariance matrix VN .

Proof. The theorem can be proven analogously to Theorem 2 in Konietschke et al. (2012a).
First we take a close look at the covariance matrix VN . Let λi,N , i = 1, . . . , a, denote the
eigenvalues of VN where λmin

N = min{λN,i|λN,i > 0, i = 1, . . . , a} is the smallest eigenvalue
larger than zero. Then, by the assumptions of this theorem, there exists a constant c0 > 0
such that λmin

N ≥ c0 for all N ≥ M0. Without loss of generality let λ1,N , . . . , λj,N → 0
and λj+1,N , . . . , λa,N ≥ c0. Since VN is a covariance matrix and therefore a symmetric
matrix, by the spectral decomposition theorem there exists an invertible matrix B such
that BVNB′ = D = D1 ⊕D2 where D1 = dia(λ1,N , . . . , λj,N ) a diagonal matrix with the
first j eigenvalues and D2 = dia(λj+1,N , . . . , λa,N ) a diagonal matrix with the remaining

eigenvalues. The asymptotic normality of
√
N(Ia ⊗ γ′)WZ is now established through the

Cramer-Wold device (7.1.9). Let k = (k1, . . . , ka)′ denote an arbitrary vector of constants.
Since B is invertible, there exists a vector k̃ such that k′ = k̃B. From Lindeberg-Feller limit
theorem it follows that:

√
Nk′(Ia ⊗ γ′)WZ√

Var(
√
Nk′(Ia ⊗ γ′)WZ)

=
Nk′(Ia ⊗ γ′)WZ√

Var(Nk′(Ia ⊗ γ′)WZ)

D→ N(0, 1)

Because:

Var(Nk′(Ia ⊗ γ′)WZ) = N ·Var(
√
Nk′(Ia ⊗ γ′)WZ) = Nk′VNk

= N k̃′BVNB′k̃ = N k̃′(D1 ⊕D2)k̃ ≥ N ·
a∑

s=j+1

k̃sc0 →∞.

Therefore the sum of variances of Nk′(Ia ⊗ γ′)WZ diverges for N → ∞ and Lindeberg’s

condition (7.1.7) is fulfilled, because the random variables N
ni
· F (r)

i (X
(r)
jk ) are uniformly

bounded, because N/ni ≤ N0 < ∞. Since it might not be clear how the term Nk′(Ia ⊗
γ′)WZ is written as a sum of independent variables, further calculations can be attained
from the appendix in Lemma (7.1.11).

Theorem (3.5.2) is a central result for developing the multiple contrast test procedure.
Before calculating test statistics however, it remains to find an appropriate estimator for the
covariance matrix VN , or subsequently ΣN , as can be seen through (3.14). An estimator
will be provided in the next section.

3.5.1 Estimating the Covariance Matrix

Through the upper calculations of the covariance matrix ΣN it becomes obvious that for

estimating ΣN , and thus VN , it is sufficient to estimate the parameters θ
(r,u)
ijs . Normally,

we would estimate θ
(r,u)
ijs through:

θ̃
(r,u)
ijs =

1

nj − 1

nj∑
k=1

(
F

(r)
i (X

(r)
jk )− 1

nj

nj∑
l=1

F
(r)
i (X

(r)
jl )

)(
F (u)
s (X

(u)
jk )− 1

nj

nj∑
l=1

F (u)
s (X

(u)
jk )

)
,
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but because the random variables F
(r)
i (X

(r)
jk ) are non-observable random variables, θ̃

(r,u)
ijs is

not a valid estimator for θijs. Therefore, we will replace F
(r)
i (X

(r)
jk ) by F̂

(r)
i (X

(r)
jk ), random

variables which are observable and presumably close enough to the non-observable random

variables for a valid estimation. The resulting estimator for θ
(r,u)
ijs is then given by:

θ̂
(r,u)
ijs =

1

nj − 1

nj∑
k=1

(
F̂

(r)
i (X

(r)
jk )− 1

nj

nj∑
l=1

F̂
(r)
i (X

(r)
jl )

)
.

(
F̂ (u)
s (X

(u)
jk )− 1

nj

nj∑
l=1

F̂ (u)
s (X

(u)
jl )

)
.

Using the mean rank notation introduced in Section 2.4 enables us to denote the proposed

estimator θ̂
(r,u)
ijs using ranks by:

θ̂
(r,u)
ijs =

1

nj − 1

nj∑
k=1

1

ni

(
R

(r)
jk (ij)−R(r)

jk (j)−R(r)

j· (ij) +
nj + 1

2

)
· 1

ns

(
R

(u)
jk (sj)−R(u)

jk (j)−R(u)

j· (sj) +
nj + 1

2

)
.

With these estimators, we are able to estimate VN consistently. Let the proposed estimator,

replacing θ
(r,u)
ijs by θ̂

(r,u)
ijs , be denoted by V̂N , and Σ̂N the estimator for ΣN accordingly. The

consistency of V̂N is proven in the following theorem.

Theorem 3.5.3. Under the assumption (A1), i.e. N →∞ such that N/ni ≤ N0 <∞ for

N0 ∈ N and all i = 1, . . . , a, it holds that: V̂N −VN
a.s.→ 0.

Proof. The theorem can be proven analogously to Lemma A.2 and Theorem A.4 from
Konietschke et al. (2012a). The key in proving the consistency of V̂N lies in proving the

consistency of Σ̂N . By the strong law of large numbers it holds that θ̃
(r,u)
ijs − θ(r,u)

ijs
a.s.→ 0

when nj , ns →∞ . Because the number of groups a and number of covariates d is bounded,

it is sufficient to prove the consistency of Σ̂N componentwise. Therefore, the proof amounts

to showing: |θ̃(r,u)
ijs − θ̂

(r,u)
ijs |

a.s.→ 0. For this denote:

D̃
(r)
ijk = F

(r)
i (X

(r)
jk )− 1

nj

nj∑
l=1

F
(r)
i (X

(r)
jl ),

and its empirical counterpart by:

D̂
(r)
ijk = F̂

(r)
i (X

(r)
jk )− 1

nj

nj∑
l=1

F̂
(r)
i (X

(r)
jl ).

Then it holds that:

|θ̃(r,u)
ijs − θ̂

(r,u)
ijs | =

∣∣∣∣∣ 1

nj − 1

nj∑
k=1

D̃
(r)
ijkD̃

(u)
sjk − D̂

(r)
ijkD̂

(u)
sjk

∣∣∣∣∣
=

∣∣∣∣∣ 1

nj − 1

nj∑
k=1

D̃
(r)
ijkD̃

(u)
sjk − D̂

(r)
ijkD̂

(u)
sjk ± D̃

(r)
ijkD̂

(u)
sjk

∣∣∣∣∣
=

∣∣∣∣∣ 1

nj − 1

nj∑
k=1

D̃
(r)
ijk(D̃

(u)
sjk − D̂

(u)
sjk)− D̂(u)

sjk(D̂
(r)
ijk − D̃

(r)
ijk)

∣∣∣∣∣
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≤ 1

nj − 1

nj∑
k=1

∣∣∣D̃(r)
ijk(D̃

(u)
sjk − D̂

(u)
sjk)− D̂(u)

sjk(D̂
(r)
ijk − D̃

(r)
ijk)
∣∣∣

≤ 1

nj − 1

nj∑
k=1

∣∣∣D̃(r)
ijk

∣∣∣ ∣∣∣D̃(u)
sjk − D̂

(u)
sjk

∣∣∣+
∣∣∣D̂(u)

sjk

∣∣∣ ∣∣∣D̂(r)
ijk − D̃

(r)
ijk

∣∣∣
≤ 1

nj − 1

nj∑
k=1

∣∣∣D̃(u)
sjk − D̂

(u)
sjk

∣∣∣+
1

nj − 1

nj∑
k=1

∣∣∣D̂(r)
ijk − D̃

(r)
ijk

∣∣∣
≤ nj
nj − 1

max
k=1,...,nj

∣∣∣D̃(u)
sjk − D̂

(u)
sjk

∣∣∣+
nj

nj − 1
max

k=1,...,nj

∣∣∣D̂(r)
ijk − D̃

(r)
ijk

∣∣∣ , (3.15)

where we used
∣∣∣D̃(r)

ijk

∣∣∣ ≤ 1 and
∣∣∣D̂(u)

sjk

∣∣∣ ≤ 1. Considering that:

∣∣∣D̂(r)
ijk − D̃

(r)
ijk

∣∣∣ =

∣∣∣∣∣F̂ (r)
i (X

(r)
jk )− 1

nj

nj∑
l=1

F̂
(r)
i (X

(r)
jl )− F (r)

i (X
(r)
jk ) +

1

nj

nj∑
l=1

F
(r)
i (X

(r)
jl )

∣∣∣∣∣
≤
∣∣∣F̂ (r)
i (X

(r)
jk )− F (r)

i (X
(r)
jk )
∣∣∣+

∣∣∣∣∣ 1

nj

nj∑
l=1

(
F

(r)
i (X

(r)
jk )− F̂ (r)

i (X
(r)
jk )
)∣∣∣∣∣

≤ 2 · max
k=1,...,nj

∣∣∣F (r)
i (X

(r)
jk )− F̂ (r)

i (X
(r)
jk )
∣∣∣

and denoting the supremum norm by ‖·‖∞, equation (3.15) yields that:

nj
nj − 1

max
k=1,...,nj

∣∣∣D̃(u)
sjk − D̂

(u)
sjk

∣∣∣+
nj

nj − 1
max

k=1,...,nj

∣∣∣D̂(r)
ijk − D̃

(r)
ijk

∣∣∣
≤ 2 · nj
nj − 1

(
max

k=1,...,nj

∣∣∣F (u)
s (X

(u)
jk )− F̂ (u)

s (X
(u)
jk )

∣∣∣+ max
k=1,...,nj

∣∣∣F (r)
i (X

(r)
jk )− F̂ (r)

i (X
(r)
jk )
∣∣∣)

≤ 2 · nj
nj − 1

(∥∥∥F (u)
s − F̂ (u)

s

∥∥∥
∞

+
∥∥∥F (r)

s − F̂ (r)
s

∥∥∥
∞

)
a.s.→ 0,

where we used that 2nj/(nj − 1) → 2 and from the Glivenko-Cantelli theorem (7.1.4) it

follows that
∥∥∥F (u)

s − F̂ (u)
s

∥∥∥
∞

a.s.→ 0. Other index combinations of the θ
(r,u)
ijs are proven in the

same manner, only with different indexing.

From the upper calculations and the assumption (A1) it follows, that:

V̂N −VN = (Ia ⊗ γ′) ·W · Σ̂N ·W′ · (Ia ⊗ γ′)′ − (Ia ⊗ γ′) ·W ·ΣN ·W′ · (Ia ⊗ γ′)′

= (Ia ⊗ γ′) ·W · (Σ̂N −ΣN )︸ ︷︷ ︸
a.s.→ 0

·W′ · (Ia ⊗ γ′)′
a.s.→ 0,

which proves the claim. Note, that plugging in the estimator γ̂ for γ as proposed in Section

3.7, will weaken the convergence to V̂N −VN
P→ 0.

The results from this section, Theorem (3.5.2) and Theorem (3.5.3), will now be used to
derive the MCTP.
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3.5.2 Derivation of Test Statistics

In Theorem (3.5.2) we have shown that:
√
N(p̂∗ − p∗)

.∼. N(0,VN ). (3.16)

The main motivation for using MCTP lies in testing hypotheses to uncover differences
between factor levels. We will be testing hypotheses using a contrast matrix C ∈ Rq×a
(2.3.1) with row vectors c1, . . . , cq, the desired contrasts, i.e. cl = (cl1, . . . , cla)′. Our goal
will be to derive multiple contrast test procedures for the family of hypotheses:

Ωp
∗

=
{
Hp∗

0 : c′lp
∗ = 0 | l = 1, . . . , q

}
, (3.17)

by providing compatible simultaneous confidence intervals for the effects δl = c′lp
∗. Simul-

taneous confidence intervals are confidence intervals for the effects δl, l = 1, . . . , q, such that
if 0 is not contained within at least one of the confidence intervals, then the global hypothesis,

i.e.
⋂q
l=1{H

p∗

0 : c′lp
∗ = 0} or simply H0 : Cp∗ = 0, can be rejected to a pre-specified level

α. In order to do this, we will begin by deriving test statistics for the individual hypotheses

Hp∗

0 : c′lp
∗ = 0, for l = 1, . . . , q. We define test statistics for the individual hypotheses by:

Tp∗

l =
√
Nc′l(p̂

∗ − p∗)/
√
v̂ll, (3.18)

where v̂lm = c′lV̂Ncm. Then by Theorem (3.5.2), Theorem (3.5.3) and Slutsky’s theorem

it follows, that Tp∗

l
D−→ N(0, 1) under the null hypothesis H0 : c′lp

∗ = 0. For developing
MCTP we will require not only the distribution of an individual test statistic, but more
importantly the joint distribution of all individual test statistics, i.e. we further need the

covariance structure of the vector of test statistics, T = (Tp∗

1 , . . . , Tp∗

q ). Denote R =
Cov(T), and assuming VN is known, with:

Cov(Tp∗

l , Tp∗

m ) = Cov(
√
Nc′l(p̂

∗ − p∗)/
√
vll ,

√
Nc′m(p̂∗ − p∗)/

√
vmm)

= Cov

√N a∑
i=1

cli(p̂
∗
i − p∗i ),

√
N

a∑
j=1

cmj(p̂
∗
j − p∗j )

 /
√
vllvmm

=

a∑
i=1

cli

b∑
j=1

cmjCov
(√

N(p̂∗i − p∗i ),
√
N(p̂∗j − p∗j )

)
/
√
vllvmm

= c′lVNcm/
√
vllvmm = vlm/

√
vllvmm,

we can calculate the covariance matrix of T, Cov(T) = R = (rlm)l,m=1,...,q where rlm =
vlm/

√
vllvmm. From Theorem (3.5.2), Slutsky’s theorem and the upper calculations, it

follows that:
T

.∼. N(0,R). (3.19)

Our goal will be to use this multivariate asymptotic property of the vector of test statis-
tics T for conceiving simultaneous test procedures. The idea behind a simultaneous test

procedure is to control the type I error for the global hypothesis
⋂q
l=1{H

p∗

0 : c′lp
∗ = 0}

by properly adjusting the individual hypotheses from Ωp∗ (3.17). The global hypothesis
is rejected, when any adjusted individual hypothesis is rejected. To better understand the
notion of simultaneous test procedures, let us introduce some important terminology from
this field, before theoretically justifying this testing approach. Most of the terminology on
simultaneous testing, and the ideas represented, can be found in a similar manner in Gabriel
(1969) and Konietschke et al. (2012a).
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Definition 3.5.4 (Joint testing family). Let Π = {πi | i ∈ I} be a family of hypotheses.
Further let Si be a real valued statistic corresponding to the hypotheses πi and S = {Si | i ∈
I}. The collection {Π, S} of hypotheses and their corresponding statistics will be called a
testing family, provided the distribution of Si is completely specified under πi, for all i ∈ I.
If, for any subfamily Π̃ = {πi | i ∈ Ĩ} where Ĩ ⊆ I, the joint distribution of all Si, i ∈ Ĩ, is
completely specified under π̃0 =

⋂
Ĩ πi, the testing family will be called joint.

Definition 3.5.5 (Simultaneous Test Procedure). Let {Π, S} be a joint testing family.
Further, let ξ be a critical value, then a simultaneous test procedure is defined as the
family of tests of all πi ∈ Π which reject any πi, i ∈ I, if Si > ξ, using the same constant ξ
for all Si ∈ S. Such a simultaneous test procedure will be denoted {Π, S, ξ}. The probability:

α = 1− PH0
(S1 < ξ, . . . , Sq < ξ) (3.20)

of falsely rejecting the intersection hypothesis, or global hypothesis, is referred to as the level
of the simultaneous test procedure.

Our goal now will be to first prove, that {Ωp∗ ,T} is in fact a joint testing family, before de-
riving a simultaneous test procedure for testing the global hypothesis through the individual
hypotheses within Ωp∗ . This gives way to following Lemma.

Lemma 3.5.6. The family of hypotheses Ωp∗ and the corresponding test statistics T asymp-
totically constitute a joint testing family.

Proof. The proof can be shown analogously to Lemma 1 Konietschke et al. (2012a). We have
shown that T asymptotically follows a multivariate normal distribution with expectation 0
and correlation matrix R. Therefore, the joint distribution of T is completely specified

under Hp∗

0 : c′lp
∗ = 0 for all l = 1, . . . , q. We have also shown, that each test statistic Tp∗

l

converges in distribution to the standard normal distribution. In particular, the asymptotic

distribution of Tp∗

l is independent from the distribution of Tp∗

m for m 6= l. Therefore, the

asymptotic joint distribution of TJ =
(
Tp∗

j |j ∈ J
)

is completely specified under arbitrary

intersections of the hypotheses
⋂
j∈J

{
Hp∗

0 : c′jp
∗ = 0

}
, where J ⊆ {1, . . . , q} denotes an

arbitrary set of indizes. Therefore, {Ωp∗ ,T} is per Definition (3.5.4) a joint testing family.

Now that we have proven, that {Ωp∗ ,T} constitutes a joint testing family in the sense of
Definition (3.5.4), we further need an appropriate critical value for deriving a simultane-
ous test procedure. Let z1−α,2,R denote the two-sided equi-coordinate (1 − α)-quantile of
N(0,R), i.e.:

P

(
q⋂
l=1

{−z1−α,2,R ≤ Xl ≤ z1−α,2,R}

)
= 1− α (3.21)

for (X1, . . . , Xq) ∼ N(0,R). Then this is, as we will yet see, an appropriate choice for a
critical value.

Figure 3 illustrates the use of equi-coordinate quantiles for a 2-dimensional multivariate
normal distribution:
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Figure 3: Two-sided (left) and one-sided (right) equi-coordinate 95%-quantiles of a 2-dimensional
multivariate standard normal distribution with correlation ρ = 0.5.

We write z1−α,2,R to emphasize that it is the two-sided equi-coordinate quantile; one-sided
quantiles are written as z1−α,1,R. For further details on equi-coordinate quantiles and their
numerical computation we refer to Bretz et al. (2001) and Genz and Bretz (2009).

The only problem which remains is that the correlation matrix R is unknown and must
be estimated. For this, we can use the estimator V̂N for VN , given in Section 3.5.1.
Then by Slutsky’s theorem, an estimator for R is given by R̂ = (r̂lm)l,m=1,...,q where

r̂lm = v̂lm/
√
v̂llv̂mm. Taking the estimator R̂ into consideration instead of the unknown

correlation matrix R, the set {Ωp∗ ,T, z1−α,2,R̂} asymptotically constitutes a simultaneous
test procedure, which controls the family wise error rate in the strong sense. This is shown
in the next theorem.

Theorem 3.5.7. The simultaneous test procedure {Ωp∗ ,T, z1−α,2,R̂} asymptotically controls
the family wise error rate in the strong sense.

Proof. The theorem can be proven analogously to Theorem 3 from Konietschke et al.
(2012a). From Lemma (3.5.6) we know that {Ωp∗ ,T} asymptotically constitutes a joint
testing family. By construction, the simultaneous test procedure {Ωp∗ ,T, z1−α,2,R} is co-
herent, i.e. a hypothesis is rejected if any hypothesis implied by it is rejected. Then the
assumptions of Theorem 7.1.1 are fulfilled. Now we replace R by its consistent estimator
R̂. Since the map f : Rq×q → R with f(R) = z1−α,2,R is continuous, by the continuous

mapping theorem it follows that f(R) − f(R̂) = z1−α,2,R − z1−α,2,R̂
P→ 0. Therefore, the

assumptions of Theorem 7.1.1 are asymptotically fulfilled and the probability of rejecting

one or more true hypotheses Hp∗

0 : c′lp
∗ = 0 if all hypotheses are true for l = 1, . . . , q is

equal to the α-level of the simultaneous test procedure. Additionally, if not all hypotheses

are true, but Hp∗

0 : c′lp
∗ = 0 for l ∈ J ⊆ {1, . . . , q} is true, the probability of rejecting at

least one true hypothesis is at most α.

Theorem (3.5.7) justifies a test decision on the global hypothesis
⋂q
l=1{H

p∗

0 : c′lp
∗ = 0} by

calculating confidence intervals for the individual hypotheses and performing a simultaneous
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test procedure. More precisely, Theorem (3.5.7) allows us to construct confidence intervals

for the individual hypothesis H0 : c′lp
∗ by using the test statistics Tp∗

l with a critical value
z1−α,2,R̂. The simultaneous confidence intervals for a two-sided individual hypotheses are
given by: [

c′lp̂
∗ − z1−α,2,R̂

√
v̂ll/N ; c′lp̂

∗ + z1−α,2,R̂

√
v̂ll/N

]
, l = 1, . . . , q. (3.22)

By the construction of these simultaneous confidence intervals, a test decision for the hy-

pothesis Hp∗

0 : c′lp
∗ = 0 can be made, i.e. whenever zero is not contained within the

corresponding confidence interval, the hypothesis is rejected. In such a case, the global hy-

pothesis Hp∗

0 : Cp∗ = 0 would also be rejected, at level α. One-sided testing is also possible
by using the one-sided equi-coordinate quantiles:[

−∞ ; c′lp̂
∗ + z1−α,1,R̂

√
v̂ll/N

]
or
[
c′lp̂
∗ − z1−α,1,R̂

√
v̂ll/N ; ∞

]
, (3.23)

where the confidence interval on the left corresponds to the hypothesis H0 : c′lp̂
∗ ≥ 0

and the confidence interval on the right to the hypothesis H0 : c′lp̂
∗ ≤ 0. The derived

simultaneous confidence intervals in (3.22) are the heart and soul of the multiple contrast
test procedures and give the possibility not only to decide on the global hypothesis, but more
importantly to know between which groups a difference occurs, without having to perform
post-hoc procedures. Of course, we could have just as well calculated the p-values of the test
statistic T through a multivariate normal distribution (this is done as well in the presented
R-script, Section 7.3), but often confidence intervals give the applicant a better feeling for the
significance of the result and are therefore required. For example, the European Medicines
Agency’s guideline on clinical evaluation of diagnostic agents states that:

“The impact on diagnostic thinking may be presented numerically; the rate of
cases where diagnostic uncertainty with a new agent has decreased as compared
to pre-test diagnosis should be reported (percentage, and confidence intervals).
Positive and negative predictive values may help clinicians modify diagnostic
thinking if reasonable thresholds have been reached.”(EMEA 2009, Section 7.3,
p.15)

Since the multivariate normal distribution of the test statistic T is only valid asymptotically,
it is not clear how good the procedure will perform on finite data. The performance in terms
of α-level and power on finite data can be attained from a simulation study in Section 4.
In the next section, we will try to approximate the distribution of the test statistic T to
improve the test procedure in terms of α-level and power.

3.5.3 Small Sample Size Approximation

Although the above procedure has been proven to work asymptotically, the convergence to
the multivariate normal distribution tends to be rather slow, especially when confronted
with small sample sizes or a large number of treatment groups. For this, we propose a
further approach which is supposed to approximate the multivariate distribution of the test
statistics faster, hence being more suited for small sample sizes.

The small sample size approximation we consider is an adaptation of Gao et al. (2008)
and Konietschke et al. (2012a) multivariate t-approximation, to which we introduce co-
variates. The idea behind this approximation is that instead of taking equi-coordinate
quantiles from the multivariate normal distribution, we take equi-coordinate quantiles from
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a multivariate t-distribution with ν degrees of freedom, in hopes of improving the si-
multaneous confidence intervals (3.22) in terms of coverage probability. The only ques-
tion which remains is how many degrees of freedom the multivariate t-distribution should
have for a useful approximation. For this, let cl = (cl1, . . . , cla)′, l = 1, . . . , q denote
the lth row of the contrast matrix C, of which hypotheses are formed. Further, de-

note p(r) = (p
(r)
1 , . . . , p

(r)
a )′, its estimator as p̂(r) = (p̂

(r)
1 , . . . , p̂

(r)
a )′ and a further term

A
(r)
lik = cli

(
H(r)(X

(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−
∑
s6=i clsωiF

(r)
s (X

(r)
ik ). Then we can calculate a

Satterthwaite approximation for the degrees of freedom by:

√
Nc′l(p̂

∗ − p∗) =
√
N

a∑
i=1

cli(p̂
∗
i − p∗i )

=
√
N

a∑
i=1

cli

d∑
r=0

γ(r)(p̂
(r)
i − p

(r)
i )

=

d∑
r=0

γ(r)
√
N

a∑
i=1

cli(p̂
(r)
i − p

(r)
i )

=

d∑
r=0

γ(r)
√
Nc′l(p̂

(r) − p(r))

.
=.

d∑
r=0

γ(r)
√
N

[
a∑
i=1

1

ni

ni∑
k=1

A
(r)
lik − 2

a∑
i=1

clip
(r)
i

]
(3.24)

=
√
N

a∑
i=1

1

ni

ni∑
k=1

d∑
r=0

γ(r)A
(r)
lik −

√
N

d∑
r=0

γ(r) · 2
a∑
i=1

clip
(r)
i ,

where the asymptotic equivalence in (3.24) is proven in Lemma (7.1.10). Because the terms

A
(r)
lik and A

(r′)
l′i′k′ are independent for k 6= k′ and i 6= i′, we obtain:

Var

[
√
N

a∑
i=1

1

ni

ni∑
k=1

d∑
r=0

γ(r)A
(r)
lik

]
= N

a∑
i=1

1

ni
Var

[
d∑
r=0

γ(r)A
(r)
li1

]

= N

a∑
i=1

1

ni
γ′ Cov



A

(0)
li1
...

A
(d)
li1




︸ ︷︷ ︸
=:Λli

γ = N

a∑
i=1

ηli
ni
,

with ηli = γ′Λliγ. Since the covariance matrices Λli are unknown, they have to be estimated.

Using Â
(r)
lik = cli

(
Ĥ(r)(X

(r)
ik )− ωiF̂ (r)

i (X
(r)
ik )
)
−
∑
s6=i clsωiF̂

(r)
s (X

(r)
ik ), an estimator for Λli

is given by:

Λ̂li =


Â

(0)
li1 . . . Â

(d)
li1

...
. . .

...

Â
(0)
lini

. . . Â
(d)
lini


′

·Pni
·


Â

(0)
li1 . . . Â

(d)
li1

...
. . .

...

Â
(0)
lini

. . . Â
(d)
lini

 . (3.25)

This enables us to estimate ηli using η̂li = γ′Λ̂liγ. Following Gao et al. (2008), we can

approximate T by a multivariate t-distribution, t(ν,0, R̂) with ν = max{1,min{ν1, . . . , νq}}
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degrees of freedom, where:

νl =

(
a∑
i=1

η̂2
li/ni

)2 / a∑
i=1

η̂4
li

(n2
i (ni − 1))

, l = 1, . . . , q. (3.26)

This approximation will be especially useful for small sample sizes. How good it performs,
in comparison to the MCTP using equi-coordinate quantiles from the multivariate normal
distribution can be obtained from the simulation study in Section 4.

3.6 Another Approach

In Section 2.6 we shortly mentioned that estimators for the adjusted relative treatment ef-
fects, p̂∗i , which can be interpreted as relative treatment effects would be desirable. We will
now give some thoughts on a procedure in which such an estimator is seemingly attained,
but which has not been proven to be correct. The reason why we present it here and not only
as an outlook for future works is, that it will be part of the simulation study and therefore
should be presented before the simulation results are discussed.

The basic idea is to undertake the data a two-step procedure. In a first step, the regression
parameters γ(r), r = 1, . . . , d, are estimated and the data is adjusted by the covariates within
the rank transformation. For this, we take a look at our underlying model (2.8) and take it
from there.

The underlying model gave us a presumed connection between the dependent variable and
the covariates in the asymptotic rank transformation by:

Y
(0)
ik =

d∑
r=1

γ(r) · Y (r)
ik + Y regik . (3.27)

From here, differences between the factor levels i = 1, . . . , a were tested for, by testing for
differences between the adjusted relative treatment effects. But instead, we could use the
adjusted terms Y regik to estimate the relative treatment effects of the factor levels. Hopes
are, that the resulting estimates for the relative treatment effects correspond to the relative
treatment effects of the dependent variable, and are still useful for testing hypotheses. For
this, we define the adjusted random variables by:

Ŷ regik = Ŷ
(0)
ik −

d∑
r=1

γ̂(r)Ŷ
(r)
ik . (3.28)

In a second step, the multiple contrast test procedures are performed on the data Ŷ regik , i =
1, . . . , a, k = 1, . . . , ni, as described in Konietschke et al. (2012a), i.e. as if no covariates were
involved. Under circumstances yet to be studied, the resulting estimates for the adjusted
relative treatment effects can be seen as estimates for the relative treatment effects of the
dependent variable, and test results using the these estimators remain valid. A similar
approach was also discussed by Siemer (1999) p.25, who does not follow it any further,
arguing that it is unprovable. Nevertheless, we will take a look as to how good this procedure
works, to validate if it is even worth following.
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3.7 Multiple Contrast Test Procedures with Unknown Regression
Parameters

Until now, we assumed that γ (2.11), the vector of regression parameters, is known. In
practice however, the parameter is unknown and has to be estimated. We have shown a
possibility of estimating γ in Section 2.5. Further, in Theorem (2.5.1), we have seen that:

γ̂
P→ γ

Since γ is an unknown but fixed parameter, using Theorem (2.5.1) and Slutsky’s theorem, the
results presented, especially the main results Theorem (3.5.2), Theorem (3.5.3) and Theorem
(3.5.7), remain valid. That is, the MCTP developed in Section 3.5 is still asymptotically
correct when plugging in γ̂ for γ.
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4 Simulation Study

We will now compare the presented procedures, in terms of power 1 − β and α-level, in
an extensive simulation study. These settings include altering group numbers (a = 3, 5),
number of covariates (d = 1, 2, 5), changing sample sizes (ni = 7, 10, 15, 25, 50) and different
distributions of the given data. Further we will also simulate an unbalanced design and
compare four different contrast matrices, the Tukey (all-pairs), the Dunnett (many-to-one),
the centering matrix and the changepoint contrast matrix. Each data setting presented was
simulated 10,000 times. We will commence by giving an overview over the different contrast
matrices, before presenting the simulation results. For a more convenient readability, we will
only present representative simulation results, while further results can be attained from the
appendix in Section 7.2.

4.1 Contrast Matrices

As mentioned before in Definition (2.3.1), a contrast matrix C 6= 0 ∈ Rq×a is a matrix,
which row sums are zero, i.e. C1a = 0. Although there exist infinitely many possibilities for
contrast matrices, some are of higher practical interest than others. Four contrast matrices
of high practical interest will be presented here, for more information on contrast matrices
we refer to Bretz et al. (2001). The first presented contrast matrix is the Tukey contrast
matrix Tukey (1953), given by:

CTukey =



−1 1 0 . . . . . . 0 0
−1 0 1 0 . . . . . . 0
...

...
...

...
...

...
...

−1 0 0 0 . . . 0 1
0 −1 1 0 0 . . . 0
0 −1 0 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 −1 1


.

The Tukey contrast matrix compares all factor levels to each other, and is therefore referred
to as the all-pairs contrast. The Dunnett contrast matrix Dunnett (1955) is given by:

CDunnett =


−1 1 0 . . . . . . 0
−1 0 1 0 . . . 0
...

...
...

...
...

...
−1 0 . . . . . . 0 1

 .

The Dunnett contrast matrix compares all factor levels to one specific factor level, e.g. the
first factor level. It is therefore referred to as the many-to-one contrast. The centering
matrix is given by:

Pa =


1− 1

a − 1
a − 1

a . . . − 1
a

− 1
a 1− 1

a − 1
a . . . − 1

a
...

...
. . .

...
...

− 1
a . . . − 1

a − 1
a 1− 1

a

 .

The centering matrix also is a contrast matrix, which compares the relative treatment effect
of every factor two the mean of all relative treatment effects. The centering matrix is also
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used for testing global hypotheses in the ANOVA and ANCOVA models, and therefore of
practical interest. A more complex contrast matrix is the changepoint contrast matrix, or
changepoint comparisons, given by:

CChangepoint =


−1 n2

N2a
. . . . . . na−1

N2a

na

N2a

− n1

N12
− n2

N12

n3

N3a
. . . na−1

N3a

na

N3a

...
...

. . .
...

...
...

− n1

N1(a−1)
− n2

N1(a−1)
. . . . . . − na−1

N1(a−1)
1

 .

where Nij =
∑j
k=i nk. The changepoint contrast matrix compares the relative treatment

effects in such a way, that change points of the relative treatment effects are uncovered.
While these contrasts were used for our simulations, we will only present the results attained
using the Tukey or all-pairs contrast matrix, the reason being, that the other simulated
contrasts behaved very similarly. Therefore, all simulation results are attained using a Tukey
contrast matrix, unless stated otherwise. Nevertheless, we will compare the performance of
the test procedures for different contrasts for one selected data setting in Section 4.2.5.

4.2 Type I Error Simulation

Before taking a look at the power 1 − β of the test procedures, we will first simulate the
α-level, or type I error of the test procedures. Table 2 gives a comprehensive overview of
the power 1− β and the α-level.

Table 2: Type I and type II errors of statistical inference.

H0 is not rejected H0 is rejected
H0 is true 1− α α (Type I error, level)
H0 is false β (Type II error) 1− β (Power)

The α-level, or type I error, refers to the probability of a test procedure rejecting the null
hypothesis, although the null hypothesis is true. The power on the other hand, refers to the
test procedure rejecting the null hypothesis under alternative. While the nature of statistical
inference makes it inevitable for type I errors to occur, the type I error can be freely chosen
when testing, provided the corresponding test behaves accordingly. In other words, if the
test user decided to test with a certain α-level, the test should hold this level. The type II
error on the other hand is harder to control and should tend to 0 as differences in the factor
levels of the data increase. It is desirable for a test to show a steep increase in power as
differences in factor levels increase.

For the upcoming simulation results, an α-level of 0.05 was chosen. It is therefore preferable
for the compared procedures to have a type I error of exactly 0.05. Should a test show a type
I error less than α, it is referred to as being conservative, because it tends to under reject
the corresponding hypothesis. If a test shows a type I error higher than α, it is referred to
as being liberal, because it tends to over reject the corresponding hypothesis.

4.2.1 Multivariate Normal Distribution

In the first part of the simulation, the covariates are simulated from a multivariate normal
distribution,

(X
(1)
ik , . . . , X

(d)
ik )

i.i.d.∼ N(0,Ψ), i = 1, . . . , a, k = 1, . . . , ni, (4.1)
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where Ψ denotes a covariance matrix of compound symmetry structure with parameter ρ:

Ψ = ρ · 1d1′d + (1− ρ) · Id.

The covariates were simulated to be independent, slightly dependent and strongly dependent
through ρ = 0, ρ = 0.5 and ρ = 0.9, respectively. In the first simulation result presented,
the dependent variable follows a standard normal distribution and is not influenced by the
covariates, i.e.:

X
(0)
ik

i.i.d.∼ N(0, 1), i = 1, . . . , a, k = 1, . . . , ni. (4.2)

Taking into account covariates in this setting cannot improve the test and will, in the worst
case, lead to erroneous results. Table 3 shows the type I error rates of the compared proce-
dures.

Table 3: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: standard normal distributed (4.2).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1389 0.0824 0.0662 0.0913 0.1458 0.0680 0.0515 0.0502
10 0.1051 0.0723 0.0576 0.0788 0.1100 0.0641 0.0491 0.0506
15 0.0856 0.0652 0.0544 0.0682 0.0886 0.0587 0.0519 0.0519
25 0.0689 0.0560 0.0505 0.0579 0.0705 0.0525 0.0458 0.0469
50 0.0599 0.0557 0.0515 0.0573 0.0623 0.0544 0.0520 0.0537

2 7 0.1575 0.1001 0.0905 0.1166 0.1656 0.0721 0.0502 0.0509
10 0.1204 0.0816 0.0682 0.0923 0.1250 0.0632 0.0479 0.0490
15 0.0935 0.0712 0.0632 0.0762 0.0991 0.0588 0.0498 0.0494
25 0.0783 0.0687 0.0597 0.0699 0.0812 0.0594 0.0539 0.0533
50 0.0635 0.0571 0.0532 0.0571 0.0629 0.0539 0.0509 0.0500

5 7 0.2613 0.1804 0.1890 0.2246 0.2699 0.0735 0.0564 0.0570
10 0.1752 0.1272 0.1195 0.1459 0.1776 0.0639 0.0485 0.0508
15 0.1272 0.1029 0.0928 0.1113 0.1327 0.0649 0.0524 0.0534
25 0.0872 0.0734 0.0675 0.0800 0.0890 0.0532 0.0484 0.0480
50 0.0677 0.0620 0.0584 0.0630 0.0684 0.0512 0.0490 0.0486

The multiple contrast test procedure using equi-coordinate quantiles from the multivariate
normal distribution is denoted by mctp.n (Section 3.5), the multiple contrast test procedure
using equi-coordinate quantiles from the multivariate t-distribution is denoted by mctp.t
(Section 3.5.3), the 2-step procedure, which remains unproven, is denoted as 2-step (Section
3.6), the ANOVA-type statistic (Section 3.4) from Siemer (1999) and the Wald-type statis-
tic (Section 3.3) are denoted by sie.ats and sie.wts respectively. Furthermore, the multiple
contrast test procedure not using covariates from Konietschke et al. (2012a), thus only us-
ing the dependent variable for statistical inference, is denoted by mctp.nc, the parametric
multiple contrast test procedure is denoted by mctp.par (Section 3.2) and the parametric
f-test is denoted by f.par (Section 3.1). Note that the procedure not considering covariates
presented here is the procedure using the multivariate t-approximation from Konietschke
et al. (2012a). While better procedures have been proposed within the same paper, this
procedure is best compared to the mctp.t derived here.
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All procedures show asymptotic properties, performing better for high sample sizes (ni = 50)
than for low sample sizes (ni = 7). Of the non-parametric approaches, aside from the 2-step
procedure, the mctp.t performs best in all displayed settings. However, the mctp.t is very
liberal, especially for a large number of covariates and few observations (d = 5, ni = 7).
The type I error is as large as 0.1804, far higher than the targeted 0.05 and unaccept-
able for a good statistical inference. For a high number of observations and few covariates
(d = 1, ni = 50), the type I error improves to a satisfactory level of 0.0557.

The reason for such a high type I error, especially considering that not using the covariates
would result in a drastically improved type I error (mctp.nc), could lie in the estimation of
the regression parameters γ(1), . . . , γ(d), d = 1, . . . , r. In this setting, an optimal estimation
would be γ(r) = 0 for all r = 1, . . . , d, as it is in the case of mctp.nc. While the estimation
in a parametric setting is adequate, in a non-parametric setting the number of combinations
in the rank transformation is limited, especially for few observations, and the regression
parameters are estimated erroneously, causing the procedure to detect a false coherence be-
tween the dependent variable and the covariates, more frequently than in the parametric
setting.

This simulation shows that adding covariates to the model in hopes of attaining signifi-
cant results will work, but yields erroneous results. To attain credible results, the sample
size needs to be accordingly high when planning to use covariates. Only then will falsely
chosen covariates be ignored by the non-parametric procedures.
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In the second simulation result presented, covariates are attained from a multivariate normal
distribution as in (4.1). The dependent variable is chosen to be the unweighted sum of the
covariates, plus an additional independent random variable, i.e.:

X
(0)
ik =

d∑
r=1

X
(r)
ik + Uik where Uik

i.i.d.∼ N(0, 1), i = 1, . . . , a, k = 1, . . . , ni. (4.3)

Thus, in this case the dependent variable is influenced by the covariates and taking into
account the covariates should yield better results. Table 4 shows the results for ρ = 0, i.e.
for independent covariates.

Table 4: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: unweighted sum of covariates (4.3).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1024 0.0596 0.0694 0.0734 0.1078 0.0705 0.0506 0.0503
10 0.0778 0.0501 0.0570 0.0620 0.0810 0.0611 0.0485 0.0483
15 0.0710 0.0531 0.0606 0.0611 0.0728 0.0599 0.0518 0.0516
25 0.0606 0.0514 0.0503 0.0521 0.0607 0.0520 0.0472 0.0487
50 0.0532 0.0486 0.0495 0.0512 0.0550 0.0534 0.0506 0.0517

2 7 0.1125 0.0645 0.0940 0.0870 0.1170 0.0715 0.0581 0.0580
10 0.0851 0.0555 0.0745 0.0696 0.0887 0.0675 0.0528 0.0522
15 0.0680 0.0493 0.0617 0.0569 0.0707 0.0586 0.0466 0.0467
25 0.0627 0.0523 0.0587 0.0588 0.0638 0.0542 0.0532 0.0536
50 0.0526 0.0475 0.0508 0.0491 0.0532 0.0513 0.0449 0.0449

5 7 0.1548 0.0935 0.1849 0.1290 0.1609 0.0714 0.0516 0.0518
10 0.1108 0.0754 0.1248 0.0964 0.1142 0.0618 0.0513 0.0544
15 0.0842 0.0641 0.0948 0.0736 0.0860 0.0586 0.0516 0.0527
25 0.0701 0.0584 0.0752 0.0662 0.0705 0.0537 0.0489 0.0496
50 0.0547 0.0500 0.0550 0.0527 0.0545 0.0504 0.0481 0.0490

In this setting, the mctp.t again performs better than the other non-parametric alternatives
in almost all parameter combinations displayed. The procedure still performs poorly for a
high number of covariates and a low number of observations, but not as dramatically as in
Table 3. Out of a methodological point of view, taking into account covariates now would be
the correct decision and, as long as the ratio between the number of covariates and sample
sizes remains healthy, the α-level of 0.05 is met more often when considering covariates,
opposed to not considering covariates.
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In a further simulation study, the covariates were generated in the same way as described
in (4.1), with the only difference being, that the dependent variable was chosen to be a
weighted sum of the covariates, i.e.:

X
(0)
ik =

d∑
r=1

r

2
·X(r)

ik + Uik where Uik
i.i.d.∼ N(0, 1), i = 1, . . . , a, k = 1, . . . , ni. (4.4)

The corresponding simulation results can be attained from Table 5.

Table 5: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: weighted sum of covariates (4.4).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1294 0.0765 0.0724 0.0913 0.1368 0.0733 0.0512 0.0521
10 0.0967 0.0663 0.0588 0.0737 0.1035 0.0624 0.0483 0.0496
15 0.0791 0.0594 0.0552 0.0642 0.0822 0.0572 0.0500 0.0509
25 0.0614 0.0502 0.0461 0.0540 0.0620 0.0498 0.0457 0.0455
50 0.0584 0.0523 0.0512 0.0547 0.0588 0.0532 0.0496 0.0511

2 7 0.1280 0.0706 0.0992 0.0982 0.1341 0.0716 0.0515 0.0520
10 0.0885 0.0579 0.0714 0.0688 0.0933 0.0606 0.0487 0.0487
15 0.0744 0.0563 0.0617 0.0640 0.0772 0.0629 0.0487 0.0490
25 0.0657 0.0543 0.0591 0.0603 0.0666 0.0540 0.0478 0.0491
50 0.0567 0.0526 0.0541 0.0548 0.0579 0.0558 0.0530 0.0530

5 7 0.1221 0.0714 0.1888 0.0947 0.1278 0.0686 0.0516 0.0513
10 0.0808 0.0531 0.1233 0.0709 0.0864 0.0638 0.0514 0.0526
15 0.0642 0.0459 0.0925 0.0555 0.0665 0.0594 0.0511 0.0508
25 0.0554 0.0466 0.0732 0.0521 0.0560 0.0556 0.0498 0.0503
50 0.0498 0.0457 0.0539 0.0471 0.0494 0.0521 0.0479 0.0485

The mctp.t again performs very well compared to the other non-parametric procedures, but
not as well as in the case of unweighted covariates (Table 4). Not taking the covariates
into account partially promises even better results in terms of α-level. It becomes clear
though, that the 2-step procedure seems to perform good for a low number of covariates
and devastating for small sample sizes and a large number of covariates. As this procedure
is unproven, we leave it to the reader to decide on further interpretations. Supplementary
results can be attained from the appendix in Section 7.2.1.

4.2.2 Multivariate Log-Normal Distribution

After having tested the procedures in different settings involving the multivariate normal
distribution, we will now regard simulation results involving the log-normal distribution.
For this, the covariates were generated to be multivariate normally distributed as described
in (4.1). Then, the components of the vector were transformed to:

(exp(X
(1)
ik ), . . . , exp(X

(d)
ik )), i = 1, . . . , a, k = 1, . . . , ni, (4.5)

where exp denotes the exponential function. Thus, the covariates now follow a multivariate
log-normal distribution with parameters 0 and covariance matrix Γ given by:

Γ = (e1(eΨij − 1))i=1,...,d,j=1,...,d.
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For the following simulation result, the dependent variable was chosen to be an unweighted
sum of the covariates, with a log-normal error term, i.e.:

X
(0)
ik =

d∑
r=1

exp(X
(r)
ik ) + Uik where Uik

i.i.d.∼ logN(0, 1), i = 1, . . . , a, k = 1, . . . , ni, (4.6)

where logN(0, 1) denotes the distribution function of exp(X), where X denotes a standard
normal random variable. Under these circumstances, neither the dependent variable, nor
the covariates are normally distributed. Therefore, the assumptions for using the parametric
approaches to considering covariates are no longer fulfilled. Nevertheless, we will compare
these procedures to see how well they perform compared to the non-parametric approaches.
Table 6 shows the results for this simulation.

Table 6: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate log-normal distributed
(4.5), ρ = 0. Dependent variable: unweighted sum of covariates (4.6).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1025 0.0550 0.0689 0.0739 0.1096 0.0716 0.0348 0.0369
10 0.0794 0.0507 0.0572 0.0611 0.0858 0.0627 0.0321 0.0343
15 0.0723 0.0520 0.0566 0.0605 0.0778 0.0632 0.0369 0.0402
25 0.0591 0.0479 0.0502 0.0516 0.0604 0.0554 0.0369 0.0381
50 0.0543 0.0498 0.0505 0.0526 0.0556 0.0518 0.0428 0.0428

2 7 0.1204 0.0675 0.0962 0.0912 0.1277 0.0790 0.0356 0.0371
10 0.0920 0.0546 0.0718 0.0707 0.0936 0.0587 0.0348 0.0370
15 0.0736 0.0548 0.0643 0.0614 0.0769 0.0594 0.0364 0.0378
25 0.0636 0.0532 0.0578 0.0568 0.0685 0.0549 0.0379 0.0389
50 0.0537 0.0485 0.0531 0.0517 0.0555 0.0531 0.0419 0.0431

5 7 0.1975 0.1256 0.1856 0.1671 0.2055 0.0663 0.0398 0.0407
10 0.1419 0.0972 0.1275 0.1194 0.1461 0.0624 0.0388 0.0386
15 0.1048 0.0797 0.0929 0.0922 0.1088 0.0616 0.0386 0.0391
25 0.0785 0.0661 0.0727 0.0713 0.0794 0.0573 0.0359 0.0372
50 0.0586 0.0519 0.0543 0.0553 0.0597 0.0514 0.0397 0.0398

As in the simulation results already presented, the mctp.t performs very well. Only for
low sample sizes and a high number of covariates the procedure becomes very liberal, still
performing better than the non-parametric alternatives. The parametric approaches now
turn out to be slightly conservative, which might be because of the underlying skewness in
the distribution of the data.

4.2.3 Binomial Distribution

One simulation study was conducted using covariates which follow a binomial distribution
with parameters m = 4 and q = 0.5. The dependent variable was chosen to be an unweighted
sum of the covariates plus an additional standard normal distributed error term. In other
words, the covariates were chosen to be:

X
(r)
ik

i.i.d.∼ Bin(m, q) for i = 1, . . . , a, k = 1, . . . , ni, r = 1, . . . , d, (4.7)
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and the dependent variable was calculated as:

X
(0)
ik =

d∑
r=1

X
(r)
ik + Uik, where Uik

i.i.d.∼ N(0, 1), i = 1, . . . , a, k = 1, . . . , ni. (4.8)

The simulation results are given in Table 7.

Table 7: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: binomial distributed (4.7). Dependent
variable: unweighted sum of covariates (4.8).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1106 0.0606 0.0730 0.0806 0.1180 0.0765 0.0504 0.0501
10 0.0832 0.0541 0.0587 0.0665 0.0858 0.0648 0.0479 0.0486
15 0.0680 0.0491 0.0520 0.0572 0.0703 0.0589 0.0475 0.0457
25 0.0602 0.0504 0.0518 0.0553 0.0638 0.0551 0.0529 0.0517
50 0.0578 0.0531 0.0518 0.0546 0.0576 0.0566 0.0518 0.0503

2 7 0.1163 0.0646 0.0900 0.0912 0.1202 0.0712 0.0511 0.0510
10 0.0906 0.0601 0.0760 0.0733 0.0962 0.0694 0.0477 0.0484
15 0.0758 0.0582 0.0674 0.0654 0.0772 0.0612 0.0519 0.0510
25 0.0666 0.0539 0.0589 0.0584 0.0663 0.0545 0.0524 0.0511
50 0.0576 0.0516 0.0546 0.0555 0.0574 0.0542 0.0519 0.0513

5 7 0.1715 0.1046 0.1916 0.1407 0.1762 0.0693 0.0475 0.0494
10 0.1181 0.0801 0.1261 0.1053 0.1242 0.0637 0.0525 0.0507
15 0.0834 0.0632 0.0864 0.0757 0.0862 0.0544 0.0493 0.0506
25 0.0730 0.0609 0.0725 0.0660 0.0723 0.0593 0.0505 0.0505
50 0.0609 0.0563 0.0580 0.0566 0.0602 0.0524 0.0504 0.0501

As seen in the previous simulation results, the mctp.t performs very well in comparison to
the other non-parametric results, but still very liberal for a high number of covariates and a
low sample size. Given the standard normal error term, the parametric approaches perform
excellent.

4.2.4 Further Distributions

Apart from the multivariate normal, the multivariate log-normal and the binomial distribu-
tion, simulation studies were also conducted for covariates from a Poisson, an exponential,
a Bernoulli and a Chi-squared distribution. In these settings, the dependent variable was
chosen to be an unweighted sum of the covariates, plus a standard normal error term. The
results attained are very similar to those of the binomial distribution, and are therefore
listed in the appendix, Section 7.2.1. Other simulation results for the multivariate normal
and the multivariate log-normal distributions can also be attained from Section 7.2.1.

4.2.5 Comparing Contrast Matrices

As mentioned before, we would like to compare the contrast matrices, presented at the
beginning of this section, in terms of α-level. For comparing contrast matrices, we chose to
use covariates generated from a multivariate normal distribution as in (4.1) with dependency
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parameter ρ = 0 and the dependent variable being an unweighted sum of the covariates,
plus an additional standard normal error term, as in (4.3). The results for d = 2 covariates
can be attained from Table 8.

Table 8: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 2. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: unweighted sum of covariates (4.3). Contrast matrices (Con): Centering
(Cen), Changepoint (Cha), Dunnett (Dun) and Tukey (Tuk).

ni Con mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

7 Cen 0.1023 0.0531 0.0984 0.0792 0.1111 0.0648 0.0494 0.0499
Cha 0.0960 0.0543 0.0835 0.0803 0.1122 0.0621 0.0503 0.0503
Dun 0.0928 0.0575 0.0817 0.0803 0.1096 0.0642 0.0500 0.0502
Tuk 0.1125 0.0645 0.0940 0.0870 0.1170 0.0715 0.0581 0.0580

10 Cen 0.0858 0.0525 0.0805 0.0705 0.0888 0.0611 0.0506 0.0523
Cha 0.0762 0.0503 0.0729 0.0678 0.0855 0.0567 0.0489 0.0509
Dun 0.0771 0.0509 0.0654 0.0659 0.0878 0.0576 0.0505 0.0502
Tuk 0.0851 0.0555 0.0745 0.0696 0.0887 0.0675 0.0528 0.0522

15 Cen 0.0719 0.0513 0.0709 0.0639 0.0731 0.0546 0.0506 0.0505
Cha 0.0695 0.0531 0.0650 0.0622 0.0738 0.0570 0.0533 0.0525
Dun 0.0672 0.0513 0.0610 0.0588 0.0717 0.0547 0.0515 0.0500
Tuk 0.0680 0.0493 0.0617 0.0569 0.0707 0.0586 0.0466 0.0467

25 Cen 0.0616 0.0516 0.0586 0.0541 0.0630 0.0582 0.0497 0.0505
Cha 0.0577 0.0495 0.0536 0.0542 0.0612 0.0535 0.0502 0.0503
Dun 0.0574 0.0483 0.0537 0.0518 0.0567 0.0499 0.0488 0.0478
Tuk 0.0627 0.0523 0.0587 0.0588 0.0638 0.0542 0.0532 0.0536

50 Cen 0.0504 0.0453 0.0496 0.0495 0.0495 0.0491 0.0463 0.0469
Cha 0.0541 0.0505 0.0538 0.0548 0.0574 0.0508 0.0518 0.0542
Dun 0.0512 0.0480 0.0519 0.0503 0.0544 0.0509 0.0481 0.0490
Tuk 0.0526 0.0475 0.0508 0.0491 0.0532 0.0513 0.0449 0.0449

Taking a look at Table 8, it becomes clear that the type of contrast matrix does not make
a big difference in terms of α-level, independent from the procedure chosen. Further results
can be attained from the appendix in Section 7.2.1.

4.2.6 Unbalanced Design

Although most experiments aim at having a balanced design, i.e. an equal number of ob-
servations per group, only few experiments actually meet this criterion in the end. Unequal
group sizes can have many reasons like dropouts, subjects who do not return for an eval-
uation, or natural restrictions, like in gene datasets, where certain genes simply occur less
frequently than others. In statistics, it is therefore very important for a test procedure to
allow for unequal sample sizes between the experiment groups, otherwise the test procedure
is highly restrictive and can only be applied very seldom.

The derived MCTP (mctp.n, mctp.t) allow for an unbalanced experiment design. In this
part of the simulation study, we would like to examine how good the procedures perform in
terms of α-level when confronted with an unbalanced design. For this, we will examine two
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different degrees of imbalance, a low degree of imbalance with n1 = 10, n2 = 15 and n3 = 20
observations in the groups, and a high degree of imbalance with n1 = 10, n2 = 50 and
n3 = 100 observations. Further, we examined three different distributions of the data. Here
we only present the results from the multivariate normal distribution, with covariates gen-
erated as in (4.1) with dependency parameter ρ = 0 and the dependent variable generated
as in (4.3), an unweighted sum of the covariates with standard normal error term, which
results are given in Table 9. The results for the other distributions, namely the log-normal
and the binomial distribution, can be attained from the appendix in Section 7.2.1.

Table 9: An α-level simulation. Design: unbalanced with n1 = 10, n2 = 15, n3 = 20 (low) and
n1 = 10, n2 = 50, n3 = 100 (high) observations. Factor levels: a = 3. Number of covariates: d =
1, 2, 5. Covariates: multivariate normal distributed (4.1), ρ = 0. Dependent variable: unweighted
sum of covariates (4.3). The degree of imbalance is abbreviated by Imba.

d Imba mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 low 0.0733 0.0518 0.0528 0.0624 0.0749 0.0499 0.0576 0.0505
high 0.0731 0.0623 0.0423 0.0723 0.0744 0.0478 0.0479 0.0490

2 low 0.0792 0.0547 0.0640 0.0672 0.0802 0.0528 0.0608 0.0531
high 0.0776 0.0633 0.0465 0.0713 0.0764 0.0490 0.0470 0.0510

5 low 0.0883 0.0662 0.0872 0.0771 0.0906 0.0495 0.0548 0.0492
high 0.0734 0.0625 0.0501 0.0735 0.0732 0.0535 0.0481 0.0502

Comparing the mctp.t in the unbalanced design with the prior balanced designs, the unbal-
anced observation numbers do not seem to have a strong effect. It seems though, that an
increasing imbalance between the factor levels results in slightly liberal test decisions. This
is not true, when taking into account 5 covariates, where the estimation of the regression
parameters seems to profit more from the higher observation numbers, than the imbal-
ance does damage. As in the prior simulation results, the mctp.t performs better than the
non-parametric alternatives, but not as good as the parametric procedures. The mctp.par
however, seems to be more conservative when confronted with a higher imbalance between
the factor levels.

4.2.7 Higher Number of Factor Levels

We shortly mentioned that we would also like to compare the performance of the test
procedures when confronted with a higher number of factor levels. Now we would like
to compare the test procedures when confronted with a = 5 factor levels. Due to the high
numerical computation times, we will only present the results for one data setting. The
covariates were generated to be multivariate normal distributed as in (4.1), with dependency
parameter ρ = 0, and the dependent variable was generated to be an unweighted sum of
covariates with an additional standard normal error term, as in (4.3). We simulated the
case of d = 2 covariates. Table 10 yields the results of this simulation.
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Table 10: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 5. Number of covariates: d = 2. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: unweighted sum of covariates (4.3).

ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

7 0.1309 0.0510 0.0857 0.0711 0.1397 0.0852 0.0495 0.0487
10 0.1024 0.0514 0.0651 0.0629 0.1101 0.0716 0.0517 0.0517
15 0.0798 0.0514 0.0570 0.0553 0.0828 0.0657 0.0501 0.0495
25 0.0660 0.0499 0.0525 0.0505 0.0652 0.0599 0.0479 0.0510
50 0.0585 0.0522 0.0504 0.0509 0.0569 0.0530 0.0480 0.0478

Comparing the results with the results attained when considering a = 3 factor levels, see
Table 4, the mctp.t does not perform worse. In fact, in performs better, which could be
because the additional observations lead to a better estimation of the regression param-
eters γ(1), . . . , γ(d). The sie.ats procedure also performs slightly better, while the sie.wts
procedure, the mctp.n and mctp.nc perform worse.

4.3 Power Simulation

We will now continue with comparing the power of the simulated procedures. As mentioned
in Section 4.2, it is desirable for a procedure to maintain the α-level as long as the null
hypothesis is fulfilled, and then show a steep increase in power under the alternative. Under
the alternative, the best procedure in terms of power is the procedure which power is closest
to one.

4.3.1 Multivariate Normal Distribution

In a similar manner as for the type I error simulation, we simulated data from the mul-
tivariate normal distribution. Analogously to (4.1), the covariates were generated to be
multivariate normal distributed, slightly dependent with parameter ρ = 0.2. The dependent
variable was chosen do be the sum of covariates, with a standard normal distributed error
term and a shift term δ on each factor level, i.e.:

X
(0)
ik =

d∑
r=1

X
(r)
ik + Uik + δ · (i− 1), i = 1, . . . , a, k = 1, . . . , ni, (4.9)

where the shift term δ varied from 0 to 1 in steps of 0.2. All procedures should increase in
power, as δ increases, and thus the differences between the factor levels of the dependent
variable increase. Figure 4 shows selected results from the power simulation. For reasons
of readability, we have chosen to compare only 4 procedures, the newly developed multiple
contrast test procedure considering covariates, mctp.t, the current procedure for coping
with covariates in a non-parametric setting, sie.ats, the parametric alternative to multiple
contrast test procedures, mctp.par, and finally the case of ignoring covariates, mctp.nc.
Further comparisons can be attained from the appendix in Section 7.2.2.
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Figure 4: Simulation results for the power (1 − β). Design: balanced with ni = 10 and ni = 25
observations on the left and right figure, respectively. Factor levels: a = 3. Number of covariates:
d = 2. Covariates: multivariate normal distributed (4.1), ρ = 0.2. Dependent variable: unweighted
sum of covariates (4.9).

In this power simulation, we have chosen a balanced data set with ni = 10 and ni = 20
observations on the left and on the right figure, respectively. Further, d = 2 covariates were
observed. On both figures it becomes clear, that considering covariates can dramatically
improve the power of the test statistic. Compared to the sie.ats procedure, mctp.t does not
perform as good, which could be because the sie.ats procedure is slightly liberal. In this
setting, the mctp.par performs better than both non-parametric approaches.

4.3.2 Multivariate Log-Normal Distribution

Similar to the type I error simulation, we also conducted a power simulation using the
multivariate log-normal distribution. The covariates were generated in the same manner as
in (4.1) and then transformed analogously to (4.5). The dependent variable was then given
as in (4.6), but with an additional shift parameter δ, i.e.:

X
(0)
ik =

d∑
r=1

exp(X
(r)
ik ) + Uik + δ · (i− 1), i = 1, . . . , a, k = 1, . . . , ni, (4.10)

where Uik
i.i.d.∼ logN(0, 1). The simulation results can be attained from Figure 5.
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Figure 5: Simulation results for the power (1 − β). Design: balanced with ni = 10 and ni = 25
observations on the left and right figure, respectively. Factor levels: a = 3. Number of covari-
ates: d = 2. Covariates: multivariate log-normal distributed (4.5), ρ = 0.2. Dependent variable:
unweighted sum of covariates (4.10).

As in the case of the multivariate normal distribution, we chose a balanced design with
ni = 10 and ni = 25 observations per group on the left and on the right figure, respectively.
The number of covariates was chosen to be d = 2 and the number of factor levels is given
by a = 3. For ni = 10 observations, the power of the statistics is almost equal, with the
sie.ats procedure being slightly liberal. For ni = 25 observations, the non-parametric pro-
cedures for considering covariates, sie.ats and mctp.t, perform equally well, but better than
the parametric alternative mctp.par. As in the case of multivariate normal distributed data,
not considering covariates, given this data setting, will lead to a loss in power.

It is important to mention that, while this is a setting in which the non-parametric pro-
cedures perform better than the parametric alternatives, this is not always the case when
considering the log-normal distribution. As can be seen in the Appendix 7.2.2, raising the
number of covariates leads to the parametric procedure being better than the non-parametric
procedure.

4.3.3 Binomial Distribution

The final power simulation was conducted using binomial distributed covariates, as done for
the type I error simulation in (4.7), with parameters m = 4 and q = 0.5. The dependent
variable was calculated analogously to (4.8) with an additional shift term δ, ranging from 0
to 1 in steps of 0.2, i.e.:

X
(0)
ik =

d∑
r=1

X
(r)
ik + Uik + δ · (i− 1), i = 1, . . . , a, k = 1, . . . , ni, (4.11)

where Uik
i.i.d.∼ N(0, 1). The simulation results can be attained from Figure 6.
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Figure 6: Simulation results for the power (1 − β). Design: balanced with ni = 10 and ni = 25
observations on the left and right figure, respectively. Factor levels: a = 3. Number of covariates:
d = 2. Covariates: binomial distributed (4.7). Dependent variable: unweighted sum of covariates
(4.11).

The figures show a similar result as for the multivariate normal distributed data. The para-
metric alternative shows the best results in terms of power, while the sie.ats procedure is
the best for non-parametric procedures, which may very well be because it is slightly liberal.
The mctp.t still performs adequately.

Concluding the power simulation for balanced designs, we have seen that the slight dif-
ferences between the non-parametric procedures, i.e. sie.ats and mctp.t, probably result
from the sie.ats procedure being slightly liberal, opposed to the mctp.t. The difference is
only very small and both procedures perform well in terms of power. Comparing the para-
metric alternative mctp.par with the mctp.t, we do not have a clearly better procedure, as
results vary according to the data setting. Under the presented data settings, an increase
in power was always observed when considering covariates, opposed to ignoring these.

4.3.4 Unbalanced Design

In Section 4.2.6 we examined the performance of the test procedures in terms of α-level,
when confronted with an unbalanced design. The aim of this part of the simulation is to
verify whether or not the derived procedure mctp.t is still effective in terms of power, when
confronted with unequal sample sizes. As in the α-level simulation, we chose to compare
two different degrees of inequality, a slight inequality between the experiment groups, where
sample sizes are n1 = 10, n2 = 15 and n3 = 20, and a grave inequality with sample sizes
n1 = 10, n2 = 50 and n3 = 100. Furthermore, we will compare the results for two differently
generated datasets. In the first simulation, the underlying data is multivariate normal
distributed as described in (4.9), but with dependency parameter ρ = 0, i.e. independent
covariates, and in the second simulation the data is multivariate log-normal distributed as
described in (4.10), again with independent covariates. The results for the first simulation
are attained from Figure 7.
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Figure 7: Simulation results for the power (1 − β). Design: unbalanced with n1 = 10, n2 = 15
and n3 = 20 (left) and n1 = 10, n2 = 50 and n3 = 100 (right). Factor levels: a = 3. Number of
covariates: d = 2. Covariates: multivariate normal distributed (4.1), ρ = 0. Dependent variable:
unweighted sum of covariates (4.9).

As in the power simulation for a balanced design and multivariate normal distribution (Fig-
ure 4), the best performance is achieved by the parametric approach, mctp.par. Not regard-
ing covariates (mctp.nc) will again yield a lower power. In a slightly unbalanced design, the
non-parametric approach sie.ats performs better than the mctp.t, which could be because
the sie.ats procedure is more liberal than the mctp.t. This changes though, as the degree of
unbalance in the design increases. When increasing the difference of the sample sizes, the
mctp.t tends to perform better than the procedure sie.ats.

In the second data setting considered for the power simulation in an unbalanced design,
the covariates were chosen to be log-normal distributed as described in (4.5) and the depen-
dent variable was calculated as in (4.10). The results can be attained from Figure 8.
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Figure 8: Simulation results for the power (1 − β). Design: unbalanced with n1 = 10, n2 = 15
and n3 = 20 (left) and n1 = 10, n2 = 50 and n3 = 100 (right). Factor levels: a = 3. Number
of covariates: d = 2. Covariates: multivariate log-normal distributed (4.5), ρ = 0. Dependent
variable: unweighted sum of covariates (4.10).

For a small imbalance between the factor levels, the mctp.t and the sie.ats procedure do
not seem to differ much. The parametric alternative mctp.par on the other hand, shows an
increase in power later than the non-parametric procedures. For a high imbalance between
the factor levels, the procedures perform very different from each other. The mctp.t performs
best, with a power always higher than that of the other procedures. The sie.ats procedure
does not rise as quickly in power, as it did for a low imbalance. The parametric alternative,
mcpt.par, again rises in power a little bit later than the non-parametric procedures, this time
ending up being better than the sie.ats procedures for δ ≥ 0.5. As in the prior simulations,
not considering covariates yields the worst power in both degrees of imbalance.
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5 Example - The Bogalusa Heart Study

Now that the newly developed procedures have been shown to be asymptotically correct and
the validity for finite sample sizes has been confirmed through simulations, the procedure
will be applied to an example.

The example we will be considering is referred to as the Bogalusa Heart Study (BHS),
and was previously used as a motivating example in Konietschke et al. (2012b). The aim
of this study was to validate a statistical association between a certain genotype and total
cholesterol values of participants. For this reason, 525 unrelated individuals of European
descent were recruited and 545,821 single-nucleotide polymorphisms (SNP’s) of interest were
examined on each participant. Additionally to the genomic sequence, 12 clinically relevant
traits were examined for each participant.

For the motivating example in Konietschke et al. (2012b), the SNP rs7738656 in the gene
C6orf170/GJA1 was chosen for statistical analysis. This SNP can have three different geno-
types, GG, AG and AA. AA indicates that a subject has an adenine nucleobase on both
chromosomes at the relevant SNP. AG indicates that a subject has an adenine nucleobase on
one chromosome and a guanine nucleobase on the partner chromosome at the SNP position.
GG indicates that a subject has guanine nucleobases on both chromosomes, at the SNP
position. The aim of the statistical analysis was to test if carrying a certain genotype, either
AA, AG or GG, is responsible for differences in total cholesterol of participants. For the
analysis, the multiple contrast test procedure without covariates Konietschke et al. (2012a)
was applied. We will now test for differences between the genotypes, but this time regard-
ing some of the 12 additionally examined traits as covariates. More specifically, we will be
considering the traits age, heart rate and body mass index as covariates in the statistical
analysis, as these traits might also have an influence on the total cholesterol of participants.

5.1 Descriptive Statistics

Before going into the analysis, let us take a descriptive look at the given data. For a
good interpretation of the analysis, it is important to control the covariates for unequal
distributions between the different genotypes. Figure 9 shows boxplots with the covariates
split into the genotypes.
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Figure 9: Boxplots showing the distribution of the covariates age, body mass index and heart rate.
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All covariates seem to be sufficiently equally distributed among the different genotypes and
are therefore statistically a good choice, as unequally distributed covariates could results
in interpretation difficulties. Figure 10 shows boxplots and histograms for the dependent
variable, according to the genotypes.
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Figure 10: Boxplots showing the distribution total cholesterol of subjects with genotypes AA, AG
and GG.

While genotypes GG and AG do not seem to show large differences, genotype AA shows
higher values for total cholesterol than the other genotypes. Genotype GG shows a symmet-
ric distribution of the total cholesterol, very close to the distribution function of the normal
distribution. Genotype AG shows a small amount of skewness to the left. The histogram of
genotype AA shows a very skewed distribution. This may very well be because of the two
extreme values in only 12 observations for this genotype. Because of this, the assumption
of a normal distribution is questionable, and non-parametric procedures should be applied.

5.2 Analysis Using R

To allow for the usage of non-parametric multiple contrast test procedures including co-
variates, an R-script was written (R version 3.0.1). The R-code can be attained from the
appendix 7.3 in full detail, while we will explain the application in this section.

The function used for statistical analysis is called mctp.cov. The inputs described below
can be passed on to the function:

− formula: A formula of the form y ∼ group + cov has to be passed on, where y refers
to the dependent variable, group to the group variable and cov to a covariate. The
number of covariates is technically not limited. The dependent variable and covariates
have to be numerical, while the group variable has to be a factor.

− data: A data frame containing the data used in the formula.
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− type: An argument in which the contrast matrix is passed on. It can be either “Tukey”,
“Dunnett”, “Sequen”, “Williams”, “Changepoint”, “AVE”, “McDermott”, “Marcus”,
“UmbrellaWilliams” or a contrast matrix, for user defined contrasts. By default, the
Tukey matrix is chosen as a contrast matrix.

− conf.level : A number between 0 and 1, giving the confidence level to which the global
hypothesis is tested. The default confidence level is set to 0.95 (95%).

− alternative: The alternative to which the test should be performed. It can be either
“two.sided”, “less” or “greater”. By default, a two sided alternative is tested.

− asy.method : The asymptotic method to use. It can be either “mult.t” or “normal”,
where the multivariate t-approximation is used by default.

− info: A logical parameter giving whether or not to post additional information when
calling the function.

− rounds: The number of digits to which the results should be rounded.

− effect : A parameter indicating whether to use unweighted or weighted relative treat-
ment effects. It can be either “unweighted” or “weighted”, where unweighted relative
treatment effects are chosen by default.

The data set given for the Bogalusa Heart Study was transferred into a data frame suited
for the analysis, with following structure:

Table 11: Outtake of the Bogalusa Heart Study

rs7738656 tc AGE BMI hr

1 AG 209 38.8 42.0 63
2 GG 190 44.9 34.2 64
...

...
...

...
...

...
525 AG 144 38.0 20.5 71

In genetic models, an allele can either be dominant, additive or recessive. Since it is not
known whether the allele is dominant, recessive or additive, we will test for differences
between the genotypes by first assuming that G is a dominant allele, secondly by assuming
that G is an additive allele and finally by assuming that G is a recessive allele, in a multiple
contrast test procedure. A common contrast matrix for this type of testing is the Marcus
type contrast matrix, given by:

CMarcus =

 −1 n2

n2+n3

n3

n2+n3

−1 0 1
− n1

n1+n2
− n2

n1+n2
1

 . (5.1)

For testing the hypothesis no global effect, i.e. the total cholesterol is not different among
the genotypes, or equivalently H0 : Cp∗ = 0, the R-script can be called using following
R-code:

1 test<−mctp . cov ( tc ∼ rs7738656+AGE+BMI+hr , data=BHS ,
2 info=T , type=”Marcus” , rounds=6)
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Executing this code line gives back following result through the console:

1 #−−−−−−Nonparametric Mult ip l e Comparisons f o r r e l a t i v e e f f e c t s−−−−−#
2
3 − Null Hypothesis : Contrasts of adj . relative treatment effects

4 are unequal 0
5 − Estimation Method : Global pseudo ranks

6 − Type of Contrast : Marcus

7 − Confidence Level : 95 %
8 − Method : Multivariate t−approximation with 66 df

9
10 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
11
12 Group Observations

13 1 A A 12
14 2 A G 140
15 3 G G 369
16
17 Number of covariates used : 3 ( AGE BMI hr )
18
19 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
20
21 Estimator Lower Upper Statistic p . Value
22 C 1 −0.268235 −0.395816 −0.140654 −4.852423 0.000017
23 C 2 −0.277234 −0.405204 −0.149264 −4.999993 0.000009
24 C 3 −0.052023 −0.111314 0.007268 −2.025061 0.095119
25
26 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

Would the parameter info have been set to false, then this output would not have been
visible and accessible merely over the newly defined variable test.

The visible output gives us some information on the processed data, as well as the test
results. The first part (lines 3-8) is intended to confirm the given input by the user. The
second part (lines 12-17) helps control for the number of observations processed. In this case
for example, not all observations were used, because some covariates were not available on
all subjects, and the corresponding subjects were therefore excluded from the analysis. The
third part of the visible output (lines 21-24) is the analysis result. Each line corresponds
to one individual hypothesis, i.e. one row of the contrast matrix. For example line 22 cor-
responds to the hypothesis: H0 : c1p

∗ = 0. The column Estimator is equal to Cp̂∗. The
column Lower lists the lower limits of the simultaneous confidence intervals for the given
contrasts (3.22). The column Upper lists the upper limits of the simultaneous confidence
intervals for the given contrasts (3.22). The column Statistic lists the value of the test
statistics for the contrasts (3.18), and finally, the column p.Value lists the p-values of the
test statistics, calculated by a multivariate t-distribution.

All of the calculated variables can be attained by accessing the newly defined variable test.
The variable test has following structure:

1 > str ( test )
2 List of 7
3 $ Data . Info : ’ data . frame ’ : 3 obs . of 2 variables :
4 . . $ Group : Factor w/ 3 levels ”A A” , ”A G” , ”G G” : 1 2 3
5 . . $ Observations : int [ 1 : 3 ] 12 140 369
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6 $ Contrast : contrMat [ 1 : 3 , 1 : 3 ] −1 −1 −0.0789 0 .275 0 . . .
7 . .− a t t r ( ∗ , ”dimnames”)=List of 2
8 . . . . $ : chr [ 1 : 3 ] ”C 1” ”C 2” ”C 3”
9 . . . . $ : chr [ 1 : 3 ] ”A A” ”A G” ”G G”

10 ..− a t t r ( ∗ , ” type ”)= chr ”Marcus”
11 ..− a t t r ( ∗ , ” c l a s s ”)= chr [ 1 : 2 ] ”contrMat” ” matrix ”
12 $ Analysis : ’ data . frame ’ : 3 obs . of 5 variables :
13 . . $ Estimator : num [ 1 : 3 ] −0.268 −0.277 −0.052
14 . . $ Lower : num [ 1 : 3 ] −0.396 −0.405 −0.111
15 . . $ Upper : num [ 1 : 3 ] −0.14065 −0.14926 0.00727
16 . . $ Statistic : num [ 1 : 3 ] −4.85 −5 −2.03
17 . . $ p . Value : num [ 1 : 3 ] 1 .71 e−05 9 .30 e−06 9 .51 e−02
18 $ gamma : num [ 1 : 4 ] −1 0 .0799 0 .1951 0 .0783
19 $ formula : Class ’ formula ’ length 3 tc ˜ rs7738656 + AGE + BMI + hr

20 . . . .− a t t r ( ∗ , ” . Environment”)=<environment : R GlobalEnv>
21 $ data : ’ data . frame ’ : 525 obs . of 5 variables :
22 . . $ rs7738656 : Factor w/ 3 levels ”A A” , ”A G” , ”G G” : 2 3 3 2 3 3 . . .
23 . . $ tc : int [ 1 : 5 2 5 ] 209 190 240 219 142 163 197 196 232 233 . . .
24 . . $ AGE : num [ 1 : 5 2 5 ] 38 .8 44 .9 43 .2 38 .3 41 .9 . . .
25 . . $ BMI : num [ 1 : 5 2 5 ] 42 34 .2 28 .7 31 .3 30 .2 . . .
26 . . $ hr : int [ 1 : 5 2 5 ] 63 64 59 53 77 59 71 57 66 65 . . .
27 $ Text . Output : List of 5
28 . . $ null . hyp : chr ” Contrasts o f adj . r e l a t i v e treatment e f f e c t s . . . ”
29 . . $ est . method : chr ” Global pseudo ranks ”
30 . . $ contr . type : chr ”Marcus”
31 . . $ conf . level : num 0 .95
32 . . $ method : chr ” Mul t i va r i a t e t−approximation with 66 df ”

from which even more estimates, parameters and variables can be accessed, if necessary.
For example, the estimated vector of regression parameters γ can be accessed through
test$gamma, where the order corresponds to the order in which the covariates were added
through the formula.

5.3 Evaluation of the Results

In this particular example, the global hypothesis is rejected to the α-level of 0.05, be-
cause at least one p-value was lower than 0.05. Konietschke et al. (2012b) come to the
same result, only that the p-values for all three individual hypothesis are slightly higher,
with (0.0058, 0.0043, 0.13) opposed to (0.00002, 0.00001, 0.09512) when considering covari-
ates. Considering that the first and the second individual hypothesis were rejected, the
experimenter can now conclude that, under the assumption that the allele G is dominant or
additive, the genotype has an effect on the total cholesterol of the subjects. Subjects with
an AA genotype show a significantly higher total cholesterol value, than subjects with an
AG or GG genotype.
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6 Discussion and Outlook

In this thesis we provided for a multiple contrast test procedure for relative treatment ef-
fects in a one-factorial design considering covariates. To improve the performance of the
test procedure a small sample size approximation using the multivariate t-distribution was
introduced. Additionally, an R-script, which can be used for applications of the procedure,
was written and demonstrated.

In an extensive simulation study, the validity of the procedure and the small sample size
approximation were verified. The simulation results show, that, in terms of α-level, the de-
veloped small sample size approximation is an improvement over using the asymptotic mul-
tivariate normal distribution, and an improvement over using the current non-parametric
alternatives for considering covariates, developed by Siemer (1999). It still performs poorly
though, especially when the number of covariates is high compared to the number of obser-
vations. Simulations showed that to maintain the α-level in a balanced design, there should
be at least 10 observations per group for each covariate considered. In terms of power,
the developed MCTP can compete with current approaches of considering covariates and,
in some cases, performs better than parametric alternatives. The developed small sample
size approximation should therefore be considered when considering covariates in a non-
parametric one-factorial design.

Although the small sample size approximation presented is an improvement over the cur-
rent non-parametric approaches to considering covariates, it still performs poorly in some
data settings. A possible improvement could be considering a transformation of the rel-
ative treatment effects. Christophliemk (2001) presented transformation methods for the
relative treatment effects when considering covariates, which could still be weaved into this
procedure and could yield better results. Another remaining problem is that the resulting
estimator for the adjusted relative treatment effects cannot be interpreted as relative treat-
ment effects. The 2-step procedure presented here promises to be a possible alternative, but
was not proven to be correct. In fact, it performed poorly in the simulation study, especially
when considering a large number of covariates. This could however be, because of a wrong
estimation of the degrees of freedom of the multivariate t-distribution which, in the case of
the 2-step procedure, does not depend on the number of covariates considered. More insight
on this procedure could help understand why it performed so poorly and how it could be
improved.

A more elemental point of criticism is the model assumption (2.8) itself. While the assump-
tion of a linear connection between the asymptotic rank transformations of the dependent
variable and the covariates is useful for establishing a connection between the two, it is prone
to errors. Especially for small sample sizes and a large number of covariates, false coherences
between the covariates and the dependent variable are quickly discovered, as the number of
permutations a data set can show in the rank transformation is limited. Simulations have
shown, that this is a problem which has to be dealt with.

Apart from theoretical improvements, the evaluation program for the user could also be
improved. A question which frequently arises when considering covariates, is whether or
not covariates even influence the dependent variable. Tests for the influence of covariates on
the dependent variable in a non-parametric setting were introduced by Bathke (1998). As
we have seen in the simulation study, taking into account covariates which do not influence
the dependent variable can lead to a high type I error rate. Testing for effects between the
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dependent variable and the covariate, and taking into account only covariates which show a
significant influence on the dependent variable might improve the test procedure. Further-
more, the one-sided confidence intervals could be improved by deriving results for upper and
lower bounds of the adjusted relative treatment effects. While the relative treatment effects
are easily covered, it is more difficult to provide upper and lower bounds for the regression
parameters.

Concluding we can say, that although there are many points of criticism and research is not
yet finished at this point, the derived simultaneous test procedure for considering covari-
ates in a non-parametric design is applicable and superior to the established non-parametric
alternatives, but still performs poorly in some data settings.
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7 Appendix

7.1 Applied Theoretical Results

Theorem 7.1.1. The probability that a coherent simultaneous test procedure {Π,S, ζ} of
level α rejects at least one true π ∈ Π is α if π0 is true; it is at most α irrespective of
the truth of π0 provided {Π,S} is either closed or joint. The probability of rejecting any
particular true π ∈ Π is no more than the above probability.

Proof. See Gabriel (1969) Theorem 2.

Lemma 7.1.2 (Portmanteau). Let Xn and X be two random vectors. Then it holds that:

Xn
D→ X ⇔ E(f(Xn))→ E(f(X))

for all continuous and bounded functions f .

Proof. See Van der Vaart (1998) p.6.

Lemma 7.1.3 (Slutsky). Let Xn, X and Y be random vectors or variables. If Xn
D→ X

and Yn
P→ c for a constant c, then:

1. Xn + Yn
D→ X + c

2. XnYn
D→ cX

Proof. See Van der Vaart (1998) p.11.

Theorem 7.1.4 (Glivenko-Cantelli Theorem). Let X1, . . . , Xn denote independently and
identically distributed random variables with distribution function F . Further let dn =
supx |F̂n(x) − F (x)| denote the supremum of the absolute difference between the distribu-

tion function F and the empirical distribution function F̂ . Then:

P
(

lim
n→∞

dn = 0
)

= 1 (7.1)

Proof. See Van der Vaart (1998) p.266.

Theorem 7.1.5 (cr-Inequality). Let X and Y denote two random variables. Then:

E [|X + Y |r] ≤ cr · (E[|X|r] + E[|Y |r]) ,

where

cr =

{
1 , for 0 < r ≤ 1,

2r−1 , for r > 1.

Proof. See Loève (1977) p.157.

Theorem 7.1.6 (Jensen’s Inequality). Let X denote a random variable with E[X] < ∞
and g(·) a convex function. Then:

g(E[X]) ≤ E[g(X)].

Proof. See Loève (1977) p.161.
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Theorem 7.1.7 (Lindeberg-Feller). Let X1, . . . , Xn
i.i.d.∼ F denote random variable with

mean E[Xi] = µi and Var[Xi] = σ2
i > 0, i = 1, . . . , n. Further denote C2

n =
∑n
i=1 σ

2
i . Then

for it holds that:

lim
n→∞

max
i=1,...,n

σi
Cn

= 0 and
1

Cn

n∑
i=1

(Xi − µi)
D→ U ∼ N(0, 1)

if and only if for all ε > 0 the Lindeberg condition is fulfilled:

lim
n→∞

1

C2
n

n∑
i=1

∫
|x−µi|>εCn

(x− µi)dFi = 0.

While the Lindeberg condition seems unhandy, it can be verified through Corollary (7.1.8).

Proof. See Gnedenko (1962).

Corollary 7.1.8. Let X1, . . . , Xn be independently distributed and uniformly bounded ran-
dom variables. Let Var(Xi) = σ2

i > 0 for i = 1, . . . , n. Then the Lindeberg condition is
fulfilled iff

∑n
i=1 σ

2
i →∞ for n→∞.

Proof. See Gnedenko (1962).

Theorem 7.1.9 (Cramer-Wold Technique). Let Xn = (Xn1, . . . , Xnd)
′ and X = (X1, . . . , Xd)

′

denote two d-dimensional random vectors. Then Xn
D→ X if and only if all linear combi-

nations of Xn converge in distribution against the corresponding linear combinations of X,
i.e.:

Xn
D→ X⇔ t′Xn

D→ t′X ∀t ∈ Rd.

Proof. See Cramer and Wold (1936).

Lemma 7.1.10 (Asymptotic Equivalence). Let C ∈ Rq×a be an arbitrary contrast matrix
with row vectors cl = (cl1, . . . , cla), l = 1, . . . , q. Define:

A
(r)
lik = cli

(
H(r)(X

(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−
∑
s6=i

clsωiF
(r)
s (X

(r)
ik )

Then it holds that:

√
Nc′l(p̂

(r) − p(r))
.
=.
√
N

(
a∑
i=1

1

ni

ni∑
k=1

A
(r)
lik − 2

a∑
i=1

clipi

)

Proof. From Brunner and Munzel (2013) p.210 it follows that:

√
N
(
p̂

(r)
i − p

(r)
i

)
.
=.
√
N

[∫
H(r)dF̂

(r)
i −

∫
F

(r)
i dĤ(r) + 1− 2p

(r)
i

]

=
√
N

 1

ni

ni∑
k=1

H(r)(X
(r)
ik )−

a∑
j=1

ωj
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk ) + 1− 2p

(r)
i


=
√
N

 1

ni

ni∑
k=1

(
H(r)(X

(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−

a∑
j 6=i

ωj
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk ) + 1− 2p

(r)
i
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⇒
√
Nc′l(p̂

(r) − p(r))

.
=.
√
N

 a∑
i=1

cli

 1

ni

ni∑
k=1

(
H(r)(X

(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−

a∑
j 6=i

ωj
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk ) + 1− 2p

(r)
i


=
√
N

 a∑
i=1

1

ni

ni∑
k=1

cli

(
H(r)(X

(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−

a∑
i=1

cli

a∑
j 6=i

ωj
1

nj

nj∑
k=1

F
(r)
i (X

(r)
jk )− 2

a∑
i=1

clip
(r)
i


=
√
N

 a∑
i=1

1

ni

ni∑
k=1

cli

(
H(r)(X

(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−

a∑
i=1

1

ni

ni∑
k=1

∑
s 6=i

clsωiF
(r)
s (X

(r)
ik )− 2

a∑
i=1

clip
(r)
i


=
√
N

 a∑
i=1

1

ni

ni∑
k=1

cli (H(r)(X
(r)
ik )− ωiF (r)

i (X
(r)
ik )
)
−
∑
s6=i

clsωiF
(r)
s (X

(r)
ik )

− 2

a∑
i=1

clip
(r)
i


=
√
N

[
a∑
i=1

1

ni

ni∑
k=1

A
(r)
lik − 2

a∑
i=1

clip
(r)
i

]

Lemma 7.1.11. Let the notation be given as in Theorem (3.5.2). In this lemma we will
prove that the term Nk′(Ia ⊗ γ′)WZ can be written as a sum of independent random vari-

ables. For this, denote p̂(r) = (p̂
(r)
1 , . . . , p̂

(r)
a )′ and p(r) = (p

(r)
1 , . . . , p

(r)
a )′.

Proof. Using Theorem (3.5.1) and Lemma (7.1.10) and defining:

B
(r)
il = ki

(
H(r)(X

(r)
il )− ωiF (r)

i (X
(r)
il )
)
−
∑
s6=i

ksωiF
(r)
s (X

(r)
il ),

we attain:

√
Nk′(p̂∗ − p∗) =

d∑
r=0

γ(r)k′
√
N(p̂(r) − p(r))

.
=.

d∑
r=0

γ(r)
√
N

 a∑
i=1

ki

 1

ni

ni∑
l=1

(
H(r)(X

(r)
il )− ωiF (r)

i (X
(r)
il )
)
−
∑
j 6=i

ωj
1

nj

nj∑
l=1

F
(r)
i (X

(r)
jl ) + 1− 2p

(r)
i


=

d∑
r=0

γ(r)
√
N

 a∑
i=1

1

ni

ni∑
l=1

ki (H(r)(X
(r)
il )− ωiF (r)

i (X
(r)
il )
)
−
∑
s6=i

ksωiF
(r)
s (X

(r)
il )

+

a∑
i=1

ki(1− 2p
(r)
i )


=

d∑
r=0

γ(r)
√
N

[
a∑
i=1

1

ni

ni∑
l=1

B
(r)
il +

a∑
i=1

ki(1− 2p
(r)
i )

]

Denoting Cil =
d∑
r=0

γ(r)B
(r)
il and µ = −

d∑
r=0

a∑
i=1

γ(r)ki(1−2p
(r)
i ), we continue our calculations:

√
Nk′(p̂∗ − p∗)

.
=.
√
N

[
a∑
i=1

1

ni

ni∑
l=1

d∑
r=0

γ(r)B
(r)
il +

d∑
r=0

a∑
i=1

γ(r)ki(1− 2p
(r)
i )

]
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=

a∑
i=1

ni∑
l=1

√
N

ni
Cil − µ

=

a∑
i=1

ni∑
l=1

(

√
N

ni
Cil − µil),

where µil are chosen such that E(Cil) = µil, which implies
∑a
i=1

∑ni

l=1 µil = µ. By con-

struction, Cil are independent over the indizes i and l. With
∑a
i=1

∑ni

l=1(Nni
Cil −

√
Nµil)

we therefore attain a term which is applicable as the enumerator for the Lindeberg-Feller
theorem (7.1.7).
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7.2 Supplementary Simulation Results

7.2.1 Type I Error Simulation

Table 12: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0.5. Dependent variable: standard normal distributed (4.2).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1353 0.0842 0.0713 0.0973 0.1441 0.0708 0.0529 0.0525
10 0.1017 0.0725 0.0599 0.0764 0.1070 0.0636 0.0480 0.0496
15 0.0848 0.0641 0.0529 0.0661 0.0874 0.0583 0.0478 0.0476
25 0.0719 0.0615 0.0539 0.0631 0.0739 0.0584 0.0505 0.0508
50 0.0611 0.0565 0.0528 0.0566 0.0622 0.0546 0.0512 0.0507

2 7 0.1625 0.1001 0.0907 0.1186 0.1697 0.0718 0.0504 0.0512
10 0.1251 0.0883 0.0743 0.0963 0.1310 0.0674 0.0512 0.0516
15 0.0873 0.0676 0.0584 0.0717 0.0917 0.0536 0.0454 0.0451
25 0.0798 0.0673 0.0593 0.0681 0.0816 0.0585 0.0504 0.0507
50 0.0619 0.0569 0.0532 0.0581 0.0626 0.0501 0.0505 0.0509

5 7 0.2579 0.1742 0.1831 0.2150 0.2641 0.0734 0.0490 0.0512
10 0.1708 0.1265 0.1188 0.1448 0.1772 0.0628 0.0495 0.0485
15 0.1273 0.1029 0.0919 0.1099 0.1317 0.0620 0.0515 0.0504
25 0.0856 0.0736 0.0658 0.0784 0.0882 0.0488 0.0457 0.0475
50 0.0692 0.0645 0.0591 0.0651 0.0690 0.0517 0.0503 0.0510

Table 13: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0.9. Dependent variable: standard normal distributed (4.2).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1428 0.0878 0.0724 0.0984 0.1525 0.0752 0.0576 0.0557
10 0.1029 0.0703 0.0595 0.0768 0.1068 0.0622 0.0475 0.0473
15 0.0857 0.0662 0.0553 0.0694 0.0886 0.0586 0.0501 0.0505
25 0.0688 0.0596 0.0528 0.0596 0.0716 0.0553 0.0495 0.0497
50 0.0627 0.0566 0.0534 0.0584 0.0632 0.0566 0.0516 0.0519

2 7 0.1599 0.0980 0.0854 0.1179 0.1690 0.0697 0.0463 0.0483
10 0.1211 0.0841 0.0708 0.0939 0.1259 0.0654 0.0531 0.0533
15 0.0905 0.0679 0.0607 0.0745 0.0922 0.0564 0.0463 0.0457
25 0.0764 0.0655 0.0580 0.0659 0.0787 0.0557 0.0501 0.0488
50 0.0655 0.0608 0.0566 0.0601 0.0657 0.0568 0.0524 0.0527

5 7 0.2570 0.1731 0.1830 0.2125 0.2638 0.0709 0.0500 0.0500
10 0.1710 0.1263 0.1152 0.1446 0.1780 0.0628 0.0469 0.0460
15 0.1247 0.0991 0.0877 0.1065 0.1254 0.0611 0.0514 0.0506
25 0.0903 0.0771 0.0677 0.0805 0.0926 0.0566 0.0522 0.0538
50 0.0706 0.0645 0.0595 0.0642 0.0691 0.0516 0.0500 0.0490
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Table 14: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: unweighted sum of covariates (4.3). Contrast matrix: Centering.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1020 0.0511 0.0790 0.0737 0.1072 0.0639 0.0477 0.0480
10 0.0784 0.0469 0.0649 0.0621 0.0818 0.0564 0.0480 0.0489
15 0.0688 0.0492 0.0619 0.0565 0.0724 0.0564 0.0509 0.0510
25 0.0623 0.0521 0.0591 0.0562 0.0626 0.0527 0.0543 0.0539
50 0.0558 0.0512 0.0537 0.0536 0.0562 0.0515 0.0532 0.0531

2 7 0.1023 0.0531 0.0984 0.0792 0.1111 0.0648 0.0494 0.0499
10 0.0858 0.0525 0.0805 0.0705 0.0888 0.0611 0.0506 0.0523
15 0.0719 0.0513 0.0709 0.0639 0.0731 0.0546 0.0506 0.0505
25 0.0616 0.0516 0.0586 0.0541 0.0630 0.0582 0.0497 0.0505
50 0.0504 0.0453 0.0496 0.0495 0.0495 0.0491 0.0463 0.0469

5 7 0.1563 0.0931 0.1985 0.1305 0.1621 0.0668 0.0487 0.0490
10 0.1097 0.0713 0.1387 0.0974 0.1141 0.0554 0.0530 0.0538
15 0.0837 0.0634 0.1015 0.0758 0.0882 0.0599 0.0492 0.0481
25 0.0667 0.0537 0.0744 0.0608 0.0653 0.0561 0.0494 0.0495
50 0.0586 0.0526 0.0635 0.0561 0.0606 0.0488 0.0497 0.0491

Table 15: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: unweighted sum of covariates (4.3). Contrast matrix: Changepoint.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.0931 0.0513 0.0677 0.0750 0.1099 0.0618 0.0518 0.0517
10 0.0718 0.0455 0.0566 0.0598 0.0827 0.0566 0.0468 0.0477
15 0.0647 0.0477 0.0514 0.0598 0.0724 0.0562 0.0535 0.0536
25 0.0605 0.0521 0.0552 0.0543 0.0628 0.0528 0.0518 0.0491
50 0.0546 0.0507 0.0525 0.0538 0.0570 0.0503 0.0513 0.0524

2 7 0.0960 0.0543 0.0835 0.0803 0.1122 0.0621 0.0503 0.0503
10 0.0762 0.0503 0.0729 0.0678 0.0855 0.0567 0.0489 0.0509
15 0.0695 0.0531 0.0650 0.0622 0.0738 0.0570 0.0533 0.0525
25 0.0577 0.0495 0.0536 0.0542 0.0612 0.0535 0.0502 0.0503
50 0.0541 0.0505 0.0538 0.0548 0.0574 0.0508 0.0518 0.0542

5 7 0.1437 0.0915 0.1754 0.1318 0.1683 0.0602 0.0489 0.0497
10 0.0996 0.0707 0.1132 0.0900 0.1102 0.0578 0.0496 0.0484
15 0.0747 0.0577 0.0818 0.0705 0.0799 0.0502 0.0508 0.0522
25 0.0627 0.0541 0.0674 0.0616 0.0680 0.0494 0.0503 0.0482
50 0.0585 0.0537 0.0612 0.0605 0.0616 0.0498 0.0528 0.0532
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Table 16: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0. Dependent variable: unweighted sum of covariates (4.3). Contrast matrix: Dunnett.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.0877 0.0538 0.0622 0.0722 0.1067 0.0630 0.0479 0.0477
10 0.0805 0.0538 0.0576 0.0657 0.0875 0.0638 0.0534 0.0558
15 0.0650 0.0501 0.0561 0.0577 0.0713 0.0549 0.0491 0.0516
25 0.0558 0.0482 0.0487 0.0515 0.0575 0.0558 0.0465 0.0484
50 0.0528 0.0486 0.0494 0.0505 0.0544 0.0494 0.0510 0.0514

2 7 0.0928 0.0575 0.0817 0.0803 0.1096 0.0642 0.0500 0.0502
10 0.0771 0.0509 0.0654 0.0659 0.0878 0.0576 0.0505 0.0502
15 0.0672 0.0513 0.0610 0.0588 0.0717 0.0547 0.0515 0.0500
25 0.0574 0.0483 0.0537 0.0518 0.0567 0.0499 0.0488 0.0478
50 0.0512 0.0480 0.0519 0.0503 0.0544 0.0509 0.0481 0.0490

5 7 0.1461 0.0941 0.1695 0.1314 0.1652 0.0651 0.0461 0.0490
10 0.1039 0.0758 0.1166 0.0950 0.1133 0.0587 0.0522 0.0516
15 0.0797 0.0629 0.0851 0.0736 0.0852 0.0561 0.0487 0.0494
25 0.0632 0.0554 0.0669 0.0639 0.0693 0.0529 0.0512 0.0512
50 0.0547 0.0518 0.0554 0.0545 0.0565 0.0518 0.0484 0.0490

Table 17: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0.5. Dependent variable: unweighted sum of covariates (4.3).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1428 0.0878 0.0724 0.0984 0.1525 0.0752 0.0576 0.0557
10 0.1029 0.0703 0.0595 0.0768 0.1068 0.0622 0.0475 0.0473
15 0.0857 0.0662 0.0553 0.0694 0.0886 0.0586 0.0501 0.0505
25 0.0688 0.0596 0.0528 0.0596 0.0716 0.0553 0.0495 0.0497
50 0.0627 0.0566 0.0534 0.0584 0.0632 0.0566 0.0516 0.0519

2 7 0.1599 0.0980 0.0854 0.1179 0.1690 0.0697 0.0463 0.0483
10 0.1211 0.0841 0.0708 0.0939 0.1259 0.0654 0.0531 0.0533
15 0.0905 0.0679 0.0607 0.0745 0.0922 0.0564 0.0463 0.0457
25 0.0764 0.0655 0.0580 0.0659 0.0787 0.0557 0.0501 0.0488
50 0.0655 0.0608 0.0566 0.0601 0.0657 0.0568 0.0524 0.0527

5 7 0.2570 0.1731 0.1830 0.2125 0.2638 0.0709 0.0500 0.0500
10 0.1710 0.1263 0.1152 0.1446 0.1780 0.0628 0.0469 0.0460
15 0.1247 0.0991 0.0877 0.1065 0.1254 0.0611 0.0514 0.0506
25 0.0903 0.0771 0.0677 0.0805 0.0926 0.0566 0.0522 0.0538
50 0.0706 0.0645 0.0595 0.0642 0.0691 0.0516 0.0500 0.0490
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Table 18: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0.9. Dependent variable: unweighted sum of covariates (4.3).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1078 0.0587 0.0745 0.0761 0.1130 0.0709 0.0515 0.0518
10 0.0809 0.0518 0.0574 0.0646 0.0848 0.0621 0.0488 0.0502
15 0.0681 0.0527 0.0560 0.0587 0.0704 0.0607 0.0512 0.0520
25 0.0569 0.0451 0.0470 0.0492 0.0572 0.0520 0.0465 0.0459
50 0.0551 0.0507 0.0534 0.0519 0.0558 0.0523 0.0493 0.0497

2 7 0.1081 0.0594 0.0934 0.0797 0.1132 0.0735 0.0520 0.0534
10 0.0810 0.0504 0.0726 0.0648 0.0837 0.0595 0.0482 0.0484
15 0.0690 0.0510 0.0613 0.0574 0.0710 0.0603 0.0495 0.0486
25 0.0605 0.0505 0.0584 0.0561 0.0610 0.0526 0.0534 0.0531
50 0.0517 0.0468 0.0525 0.0512 0.0520 0.0544 0.0497 0.0492

5 7 0.1535 0.0908 0.2032 0.1268 0.1580 0.0729 0.0516 0.0512
10 0.1075 0.0727 0.1330 0.0937 0.1128 0.0639 0.0547 0.0548
15 0.0765 0.0587 0.0911 0.0675 0.0757 0.0622 0.0505 0.0507
25 0.0656 0.0555 0.0726 0.0612 0.0665 0.0526 0.0502 0.0492
50 0.0526 0.0478 0.0556 0.0504 0.0540 0.0524 0.0491 0.0463

Table 19: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0.5. Dependent variable: weighted sum of covariates (4.4).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1227 0.0726 0.0701 0.0870 0.1304 0.0725 0.0522 0.0518
10 0.0969 0.0658 0.0598 0.0752 0.1013 0.0624 0.0495 0.0506
15 0.0787 0.0601 0.0543 0.0658 0.0819 0.0580 0.0511 0.0504
25 0.0636 0.0530 0.0493 0.0547 0.0632 0.0544 0.0475 0.0464
50 0.0597 0.0549 0.0521 0.0568 0.0595 0.0542 0.0531 0.0543

2 7 0.1215 0.0654 0.0996 0.0947 0.1266 0.0763 0.0562 0.0552
10 0.0829 0.0506 0.0662 0.0670 0.0855 0.0600 0.0460 0.0444
15 0.0732 0.0539 0.0627 0.0622 0.0738 0.0582 0.0490 0.0481
25 0.0660 0.0560 0.0597 0.0582 0.0654 0.0538 0.0527 0.0518
50 0.0565 0.0512 0.0560 0.0532 0.0555 0.0583 0.0502 0.0504

5 7 0.0944 0.0513 0.1928 0.0708 0.1001 0.0684 0.0537 0.0530
10 0.0578 0.0356 0.1216 0.0474 0.0600 0.0653 0.0518 0.0532
15 0.0493 0.0339 0.0955 0.0415 0.0490 0.0556 0.0519 0.0515
25 0.0459 0.0377 0.0784 0.0425 0.0451 0.0584 0.0527 0.0516
50 0.0422 0.0385 0.0573 0.0407 0.0407 0.0546 0.0494 0.0478
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Table 20: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate normal distributed (4.1),
ρ = 0.9. Dependent variable: weighted sum of covariates (4.4).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1326 0.0768 0.0739 0.0926 0.1395 0.0742 0.0527 0.0528
10 0.0957 0.0656 0.0581 0.0745 0.1020 0.0637 0.0498 0.0506
15 0.0811 0.0623 0.0585 0.0660 0.0841 0.0603 0.0531 0.0521
25 0.0618 0.0517 0.0486 0.0538 0.0631 0.0518 0.0439 0.0431
50 0.0596 0.0547 0.0524 0.0554 0.0596 0.0537 0.0527 0.0528

2 7 0.1268 0.0728 0.0981 0.0983 0.1337 0.0773 0.0533 0.0531
10 0.0895 0.0590 0.0740 0.0726 0.0945 0.0603 0.0469 0.0487
15 0.0780 0.0575 0.0661 0.0649 0.0793 0.0619 0.0505 0.0491
25 0.0684 0.0551 0.0596 0.0606 0.0666 0.0575 0.0539 0.0537
50 0.0527 0.0480 0.0512 0.0499 0.0535 0.0522 0.0467 0.0465

5 7 0.1170 0.0671 0.1875 0.0917 0.1210 0.0733 0.0507 0.0499
10 0.0785 0.0526 0.1219 0.0645 0.0802 0.0678 0.0525 0.0525
15 0.0598 0.0463 0.0879 0.0514 0.0618 0.0626 0.0524 0.0522
25 0.0521 0.0422 0.0683 0.0467 0.0507 0.0543 0.0502 0.0495
50 0.0485 0.0431 0.0570 0.0457 0.0474 0.0547 0.0462 0.0467

Table 21: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate log-normal distributed
(4.5), ρ = 0.5. Dependent variable: unweighted sum of covariates (4.6).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1042 0.0570 0.0703 0.0736 0.1143 0.0731 0.0343 0.0364
10 0.0831 0.0519 0.0586 0.0630 0.0871 0.0646 0.0317 0.0333
15 0.0749 0.0546 0.0617 0.0629 0.0794 0.0622 0.0363 0.0375
25 0.0617 0.0503 0.0527 0.0544 0.0633 0.0578 0.0351 0.0352
50 0.0583 0.0527 0.0535 0.0546 0.0590 0.0533 0.0450 0.0466

2 7 0.1049 0.0537 0.0939 0.0784 0.1107 0.0731 0.0355 0.0361
10 0.0815 0.0497 0.0727 0.0652 0.0868 0.0660 0.0331 0.0364
15 0.0677 0.0494 0.0624 0.0552 0.0738 0.0596 0.0372 0.0400
25 0.0597 0.0495 0.0590 0.0565 0.0635 0.0572 0.0395 0.0399
50 0.0565 0.0510 0.0527 0.0528 0.0590 0.0533 0.0422 0.0439

5 7 0.1514 0.0883 0.1881 0.1270 0.1575 0.0720 0.0375 0.0377
10 0.1080 0.0683 0.1338 0.0932 0.1154 0.0607 0.0352 0.0370
15 0.0764 0.0565 0.0926 0.0702 0.0801 0.0594 0.0363 0.0388
25 0.0658 0.0537 0.0770 0.0613 0.0708 0.0556 0.0399 0.0405
50 0.0558 0.0508 0.0603 0.0546 0.0591 0.0487 0.0436 0.0441
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Table 22: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate log-normal distributed
(4.5), ρ = 0.9. Dependent variable: unweighted sum of covariates (4.6).

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1074 0.0563 0.0724 0.0746 0.1157 0.0764 0.0336 0.0356
10 0.0794 0.0524 0.0592 0.0592 0.0850 0.0635 0.0321 0.0349
15 0.0694 0.0522 0.0550 0.0563 0.0733 0.0621 0.0364 0.0374
25 0.0579 0.0469 0.0478 0.0507 0.0597 0.0531 0.0350 0.0365
50 0.0555 0.0515 0.0503 0.0518 0.0553 0.0533 0.0429 0.0434

2 7 0.0937 0.0457 0.0933 0.0766 0.1011 0.0727 0.0354 0.0371
10 0.0746 0.0443 0.0751 0.0624 0.0809 0.0639 0.0306 0.0330
15 0.0638 0.0429 0.0618 0.0555 0.0685 0.0530 0.0349 0.0369
25 0.0598 0.0491 0.0602 0.0556 0.0635 0.0554 0.0386 0.0393
50 0.0527 0.0482 0.0504 0.0502 0.0564 0.0537 0.0408 0.0411

5 7 0.1357 0.0738 0.1961 0.1129 0.1357 0.0714 0.0376 0.0376
10 0.0930 0.0563 0.1285 0.0830 0.0975 0.0632 0.0405 0.0415
15 0.0708 0.0492 0.0970 0.0647 0.0735 0.0603 0.0358 0.0373
25 0.0551 0.0424 0.0680 0.0533 0.0595 0.0513 0.0397 0.0420
50 0.0516 0.0452 0.0604 0.0503 0.0572 0.0567 0.0403 0.0407

Table 23: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: Poisson(1) distributed. Dependent
variable: unweighted sum of covariates with standard normal error term.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1118 0.0635 0.0745 0.0788 0.1168 0.0742 0.0536 0.0533
10 0.0891 0.0562 0.0640 0.0700 0.0919 0.0590 0.0497 0.0493
15 0.0687 0.0506 0.0519 0.0549 0.0709 0.0547 0.0453 0.0455
25 0.0637 0.0544 0.0536 0.0598 0.0650 0.0529 0.0527 0.0527
50 0.0590 0.0537 0.0537 0.0550 0.0588 0.0547 0.0505 0.0503

2 7 0.1194 0.0651 0.0878 0.0922 0.1216 0.0694 0.0488 0.0501
10 0.0877 0.0554 0.0694 0.0703 0.0885 0.0638 0.0478 0.0482
15 0.0728 0.0539 0.0602 0.0629 0.0732 0.0586 0.0486 0.0473
25 0.0618 0.0519 0.0551 0.0548 0.0622 0.0559 0.0488 0.0489
50 0.0574 0.0526 0.0559 0.0525 0.0553 0.0523 0.0524 0.0517

5 7 0.1882 0.1178 0.1914 0.1599 0.1941 0.0680 0.0512 0.0533
10 0.1318 0.0886 0.1268 0.1126 0.1352 0.0658 0.0470 0.0459
15 0.0930 0.0731 0.0955 0.0827 0.0979 0.0581 0.0509 0.0509
25 0.0725 0.0614 0.0695 0.0659 0.0731 0.0586 0.0519 0.0522
50 0.0592 0.0544 0.0584 0.0555 0.0593 0.0505 0.0531 0.0519



7 APPENDIX 67

Table 24: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: Exp(1) distributed. Dependent
variable: unweighted sum of covariates with standard normal error term.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1072 0.0575 0.0694 0.0759 0.1135 0.0691 0.0491 0.0492
10 0.0887 0.0570 0.0604 0.0677 0.0947 0.0630 0.0507 0.0505
15 0.0693 0.0517 0.0530 0.0582 0.0734 0.0564 0.0492 0.0480
25 0.0609 0.0516 0.0532 0.0568 0.0628 0.0567 0.0503 0.0490
50 0.0556 0.0500 0.0490 0.0531 0.0562 0.0524 0.0497 0.0493

2 7 0.1201 0.0648 0.0908 0.0903 0.1272 0.0715 0.0491 0.0491
10 0.0928 0.0604 0.0711 0.0774 0.0974 0.0649 0.0499 0.0507
15 0.0767 0.0554 0.0628 0.0635 0.0769 0.0601 0.0495 0.0497
25 0.0656 0.0562 0.0586 0.0609 0.0673 0.0616 0.0503 0.0493
50 0.0576 0.0518 0.0542 0.0536 0.0567 0.0577 0.0508 0.0520

5 7 0.1897 0.1161 0.1880 0.1641 0.1940 0.0749 0.0519 0.0521
10 0.1323 0.0900 0.1221 0.1116 0.1339 0.0633 0.0509 0.0502
15 0.0972 0.0760 0.0916 0.0893 0.1008 0.0572 0.0487 0.0493
25 0.0705 0.0578 0.0677 0.0638 0.0700 0.0548 0.0491 0.0501
50 0.0640 0.0600 0.0616 0.0597 0.0654 0.0514 0.0507 0.0522

Table 25: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: Bernoulli(0.5) distributed. Dependent
variable: unweighted sum of covariates with standard normal error term.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1320 0.0809 0.0727 0.0965 0.1371 0.0750 0.0531 0.0526
10 0.0981 0.0671 0.0594 0.0753 0.1032 0.0643 0.0476 0.0478
15 0.0785 0.0611 0.0542 0.0637 0.0811 0.0596 0.0474 0.0495
25 0.0678 0.0559 0.0542 0.0584 0.0710 0.0541 0.0488 0.0495
50 0.0573 0.0529 0.0517 0.0535 0.0585 0.0546 0.0495 0.0512

2 7 0.1447 0.0856 0.0933 0.1128 0.1482 0.0701 0.0548 0.0535
10 0.1061 0.0712 0.0710 0.0832 0.1102 0.0663 0.0470 0.0468
15 0.0820 0.0636 0.0608 0.0685 0.0853 0.0583 0.0488 0.0482
25 0.0684 0.0572 0.0552 0.0615 0.0701 0.0564 0.0527 0.0517
50 0.0571 0.0527 0.0504 0.0548 0.0588 0.0532 0.0518 0.0509

5 7 0.2333 0.1497 0.1887 0.1983 0.2390 0.0699 0.0491 0.0498
10 0.1491 0.1048 0.1189 0.1308 0.1546 0.0661 0.0514 0.0504
15 0.1115 0.0874 0.0941 0.0992 0.1171 0.0625 0.0516 0.0500
25 0.0818 0.0708 0.0685 0.0752 0.0826 0.0581 0.0505 0.0486
50 0.0659 0.0596 0.0597 0.0639 0.0673 0.0533 0.0523 0.0544
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Table 26: An α-level simulation. Design: balanced with ni = 7, 10, 15, 25, 50 observations. Factor
levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: Chi2(1) distributed. Dependent
variable: unweighted sum of covariates with standard normal error term.

d ni mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 7 0.1060 0.0587 0.0737 0.0782 0.1150 0.0698 0.0521 0.0527
10 0.0880 0.0556 0.0611 0.0677 0.0933 0.0622 0.0499 0.0511
15 0.0701 0.0526 0.0552 0.0573 0.0726 0.0612 0.0556 0.0555
25 0.0600 0.0510 0.0529 0.0554 0.0617 0.0552 0.0520 0.0526
50 0.0560 0.0518 0.0524 0.0531 0.0559 0.0521 0.0493 0.0476

2 7 0.1098 0.0583 0.0855 0.0835 0.1159 0.0688 0.0447 0.0450
10 0.0986 0.0630 0.0770 0.0800 0.1027 0.0681 0.0516 0.0516
15 0.0766 0.0579 0.0617 0.0666 0.0769 0.0613 0.0496 0.0483
25 0.0605 0.0517 0.0573 0.0564 0.0642 0.0541 0.0491 0.0469
50 0.0623 0.0583 0.0565 0.0592 0.0632 0.0579 0.0527 0.0524

5 7 0.1934 0.1227 0.1821 0.1653 0.2016 0.0687 0.0503 0.0493
10 0.1385 0.0945 0.1246 0.1182 0.1435 0.0652 0.0506 0.0515
15 0.0991 0.0753 0.0914 0.0890 0.1010 0.0590 0.0511 0.0510
25 0.0754 0.0621 0.0706 0.0698 0.0777 0.0498 0.0470 0.0452
50 0.0626 0.0587 0.0601 0.0613 0.0653 0.0491 0.0505 0.0505

Table 27: An α-level simulation. Design: unbalanced with n1 = 10, n2 = 15, n3 = 20 (low) and
n1 = 10, n2 = 50, n3 = 100 (high) observations. Factor levels: a = 3. Number of covariates:
d = 1, 2, 5. Covariates: multivariate log-normal distributed (4.5), ρ = 0. Dependent variable:
unweighted sum of covariates (4.6). The degree of imbalance is abbreviated by Imba.

d Imba mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 low 0.0769 0.0534 0.0551 0.0661 0.0799 0.0549 0.0379 0.0385
high 0.0752 0.0618 0.0378 0.0763 0.0754 0.0430 0.0528 0.0517

2 low 0.0811 0.0579 0.0643 0.0675 0.0839 0.0574 0.0388 0.0392
high 0.0828 0.0705 0.0452 0.0847 0.0841 0.0444 0.0530 0.0525

5 low 0.1041 0.0756 0.0845 0.0891 0.1088 0.0581 0.0411 0.0401
high 0.0837 0.0696 0.0408 0.0824 0.0834 0.0438 0.0528 0.0519

Table 28: An α-level simulation. Design: unbalanced with n1 = 10, n2 = 15, n3 = 20 (low) and
n1 = 10, n2 = 50, n3 = 100 (high) observations. Factor levels: a = 3. Number of covariates: d =
1, 2, 5. Covariates: binomial distributed (4.7). Dependent variable: unweighted sum of covariates
(4.8). The degree of imbalance is abbreviated by Imba.

d Imba mctp.n mctp.t 2-step sie.ats sie.wts mctp.nc mctp.par f.par

1 low 0.0758 0.0529 0.0526 0.0660 0.0790 0.0553 0.0494 0.0492
high 0.0744 0.0618 0.0423 0.0705 0.0734 0.0487 0.0485 0.0511

2 low 0.0764 0.0559 0.0619 0.0656 0.0780 0.0588 0.0497 0.0493
high 0.0725 0.0596 0.0428 0.0746 0.0703 0.0444 0.0505 0.0510

5 low 0.0859 0.0636 0.0824 0.0758 0.0870 0.0562 0.0483 0.0483
high 0.0745 0.0612 0.0451 0.0756 0.0743 0.0487 0.0495 0.0520
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7.2.2 Power Simulation
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Figure 11: Simulation results for the power (1 − β). Design: balanced with ni = 7, 10, 15, 25, 50
observations. Factor levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate
normal distributed (4.1), ρ = 0.2. Dependent variable: unweighted sum of covariates (4.9).
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Figure 12: Simulation results for the power (1 − β). Design: balanced with ni = 7, 10, 15, 25, 50
observations. Factor levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: multivariate
log-normal distributed (4.5), ρ = 0.2. Dependent variable: unweighted sum of covariates (4.10).
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Figure 13: Simulation results for the power (1 − β). Design: balanced with ni = 7, 10, 15, 25, 50
observations. Factor levels: a = 3. Number of covariates: d = 1, 2, 5. Covariates: binomial
distributed (4.7). Dependent variable: unweighted sum of covariates (4.11).
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7.3 R-Code

In this section we present the R-script written for the user, which was used to evaluate
the example in Section 5. The R-code for the simulations and graphics is not listed in this
thesis. If you are interested in the R-code for the simulations and graphics, please write me
an email: thomas.asendorf@stud.uni-goettingen.de.

1 mctp . cov<−f unc t i on ( formula , data , type=c ( ”Tukey” , ”Dunnett” , ”Sequen” ,
2 ” Wil l iams ” , ”Changepoint” , ”AVE” , ”McDermott” , ”Marcus” ,
3 ” Umbrel laWil l iams ” ) , conf . level=0.95 , alternative=c ( ”two . s ided ” ,
4 ” l e s s ” , ” g r e a t e r ” ) , asy . method=c ( ”mult . t ” , ”normal” ) , info=T , rounds=3,
5 effect=c ( ” unweighted ” , ” weighted ” ) ){
6
7 input . l i s t<− l i s t ( formula=formula , data=data , type=type [ 1 ] ,
8 conf . level=conf . level , alternative=alternative [ 1 ] ,
9 asy . method=asy . method [ 1 ] , info=info , rounds=rounds ,

10 effect=effect [ 1 ] )
11
12 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 #Loading r equ i r ed packages
14 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 r e q u i r e ( mvtnorm , quietly=T )
16 r e q u i r e ( MASS , quietly=T )
17 r e q u i r e ( nparcomp , quietly=T )
18 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19
20 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 #D e f i n i t i o n o f custom f u n c t i o n s
22 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 P<−f unc t i on (n ){
24 diag (1 , abs (n))−1/n
25 }
26
27 ’%+%’<−f unc t i on (A , B ){
28 a . 1<−nrow (A )
29 a . 2<−nco l (A )
30 b . 1<−nrow (B )
31 b . 2<−nco l (B )
32
33 cbind ( rbind (A , matrix (0 , nco l=a . 2 , nrow=b . 1 ) ) ,
34 rbind ( matrix (0 , nco l=b . 2 , nrow=a . 1 ) , B ) )
35 }
36
37 tr<−f unc t i on (A ){
38 sum( diag (A ) )
39 }
40 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41
42 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 #P o s s i b l e input e r r o r s
44 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 i f ( conf . level >=1 | | conf . level <=0){
46 stop ( ”The con f idence l e v e l must be between 0 and 1” )
47 }
48 i f ( length ( formula ) !=3){
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49 stop ( ”You can only ana lyse one−way layout s ” )
50 }
51 type<−match . arg ( type )
52 alternative<−match . arg ( alternative )
53 asy . method<−match . arg ( asy . method )
54 effect<−match . arg ( effect )
55 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56
57 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 #Prepar ing the data
59 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 dat<−model . frame ( formula , data )
61 data . sav<−data
62
63 i f ( nco l ( dat)==2){
64 return ( mctp ( formula=formula , data=data , type=type ,
65 conf . level=conf . level ,
66 alternative=alternative , asy . method=asy . method ,
67 info=info , rounds=rounds , effect=effect ) )
68 }
69
70 resp . covs<−dat [ ,−2]
71 factorx<−as . f a c t o r ( dat [ , 2 ] )
72 samples<−s p l i t ( resp . covs , factorx )
73
74 a<−n l e v e l s ( factorx )
75 d<−nco l ( resp . covs )
76 n<−sapply ( samples , nrow )
77 N<−sum(n )
78 contrast<−type
79 pseudo<−( effect==” unweighted ” )
80
81 i f ( any (n<=1)){
82 stop ( ”At l e a s t one group has only one obse rvat i on ” )
83 }
84
85 data<−as . matrix ( samples [ [ 1 ] ] )
86 f o r (i in 2 : a ){
87 data<−rbind ( data , as . matrix ( samples [ [ i ] ] ) )
88 }
89 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90
91 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92 #Analyzing the data
93 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94
95 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 #Ca l cu l a t ing inner Ranks
97 #Fs [ i , , r ] conta in s F i ˆ r (X 11ˆ r ) , . . , F i ˆ r (X an aˆ r )
98 Fs<−array (0 , dim=c (a , N , d ) )
99

100 f o r (i in 1 : a ){
101 f o r (r in 1 : d ){
102 h<−t ( matrix (1 , nco l=N , nrow=n [ i ] ) ∗
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103 data [ ( sum(n [ 0 : ( i−1) ])+1) : sum(n [ 1 : i ] ) , r ] )
104 Fs [ i , , r ]<−rowSums ( ( data [ , r]>h)+1/2∗ ( data [ , r]==h ) ) ∗1/n [ i ]
105 }}
106 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 #Estimating the p ’ s
108 M . 1<−t ( as . matrix ( rep (1 , n [ 1 ] ) ) /n [ 1 ] )
109 f o r (i in 2 : a ){
110 M . 1<−M.1%+%t ( as . matrix ( rep (1 , n [ i ] ) ) /n [ i ] )
111 }
112
113 #p . p a i r s [ i , j , r ] conta in s p i j ˆ r
114 p . p a i r s<−array (0 , dim=c (a , a , d ) )
115 f o r (i in 1 : a ){
116 p . p a i r s [ i , , ]<−M . 1 %∗%Fs [ i , , ]
117 }
118
119 p . hat<−array (0 , dim=c (a , d ) )
120 i f ( pseudo==T ){
121 f o r (r in 1 : d ){
122 p . hat [ , r ]<−colMeans (p . p a i r s [ , , r ] )
123 }
124 } e l s e {
125 f o r (r in 1 : d ){
126 p . hat [ , r ]<−t (n/N )%∗%p . p a i r s [ , , r ]
127 }
128 }
129
130 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 #Estimating the gamma’ s
132 y . hat<−rep (0 , N )
133
134 #data . r [ j , r ] conta in s Y ik ˆ r where ik are chosen acco rd ing ly
135 data . r<−array (0 , dim=c (N , d ) )
136
137 i f ( pseudo==T ){
138 f o r (r in 1 : d ){
139 data . r [ , r ]<−t ( rep (1 /a , a ) ) %∗%Fs [ , , r ]
140 }
141 } e l s e {
142 f o r (r in 1 : d ){
143 data . r [ , r ]<−t (n/N )%∗%Fs [ , , r ]
144 }
145 }
146
147 D<−P (n [ 1 ] )
148 f o r (i in 2 : a ){
149 D<−D%+%P (n [ i ] )
150 }
151
152 y . hat<−D%∗%data . r [ , 1 ]
153
154 X . hat<−D%∗%data . r [ ,−1]
155 gamma . hat<−s o l v e (t (X . hat )%∗%X . hat )%∗%t (X . hat )%∗%y . hat
156 gamma<−c (−1 ,gamma . hat )
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157
158 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
159 #Estimating p∗
160 p . star<−−p . hat%∗%gamma

161 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
162 #Estimation o f VN
163 theta<−f unc t i on (i , j , s , r , u , Fs , n ){
164 n . j<−c (0 , n )
165 1/ (n [ j ]−1)∗ ( Fs [ i , ( sum(n . j [ 1 : j ] ) + 1 ) : sum(n . j [ 1 : ( j+1) ] ) , r ] %∗%
166 P (n . j [ j+1])%∗%Fs [ s , ( sum(n . j [ 1 : j ] ) + 1 ) : sum(n . j [ 1 : ( j+1) ] ) , u ] )
167 }
168
169 Sigma<−matrix (0 , nco l=aˆ2∗d , nrow=aˆ2∗d )
170
171 f o r (t in 1 : a ){
172 f o r (u in 1 : d ){
173 f o r (s in 1 : a ){
174 f o r (j in 1 : a ){
175 f o r (r in 1 : d ){
176 f o r (i in 1 : a ){
177 i f (i==j | t==s ){
178 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−0
179 }
180 i f ( ( i !=j & t !=s ) & (j==t & i==s ) ){
181 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−1/n [ j ] ∗
182 theta (i , j , s , r , u , Fs , n)+1/n [ i ] ∗theta (j , i , t , r , u , Fs , n )
183 }
184 i f ( ( i !=j & t !=s ) & (j==s & i==t ) ){
185 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−
186 −1/n [ j ] ∗theta (i , j , t , r , u , Fs , n)−1/n [ i ] ∗
187 theta (j , i , s , r , u , Fs , n )
188 }
189 i f ( ( i !=j & t !=s ) & (j !=s & j !=t & i==t ) ){
190 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−
191 −1/n [ i ] ∗theta (j , i , s , r , u , Fs , n )
192 }
193 i f ( ( i !=j & t !=s ) & (j !=s & j !=t & i==s ) ){
194 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−
195 1/n [ i ] ∗theta (j , i , t , r , u , Fs , n )
196 }
197 i f ( ( i !=j & t !=s ) & (j==t & i !=s & i !=t ) ){
198 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−
199 1/n [ j ] ∗theta (i , j , s , r , u , Fs , n )
200 }
201 i f ( ( i !=j & t !=s ) & (j==s & i !=s & i !=t ) ){
202 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−
203 −1/n [ j ] ∗theta (i , j , t , r , u , Fs , n )
204 }
205 i f ( ( i !=j & t !=s ) & (j !=s & j !=t & i !=s & i !=t ) ){
206 Sigma [ a∗d∗ (j−1)+a∗ (r−1)+i , a∗d∗ (t−1)+a∗ (u−1)+s ]<−0
207 }
208 }}}}}}
209
210 i f ( pseudo==T ){
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211 W<−diag (a∗d)%x%t ( rep (1 /a , a ) )
212 } e l s e {
213 W<−diag (a∗d)%x%t (n/N )
214 }
215 VN<−N∗ ( d iag (a)%x%t ( gamma ) ) %∗%W%∗%Sigma%∗%
216 t (W )%∗%( diag (a)%x%gamma )
217
218 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
219 #Making o f the con t ra s t matrix
220
221 i f ( i s . matrix ( contrast ) ){
222 CM<−contrast
223 } e l s e {
224 CM<−contrMat (n , contrast )
225 }
226
227 q<−nrow ( CM )
228
229 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
230 #MCTP with normal d i s t r i b u t i o n
231 i f ( asy . method==”normal” ){
232
233 CV<−CM%∗%VN%∗%t ( CM )
234 R . hat<−cov2cor ( CV )
235
236 switch ( alternative ,
237 ”two . s ided ”={
238
239 q u a n t i l e<−qmvnorm ( conf . level , tail=”both” , corr=R . hat ) $ q u a n t i l e
240
241 upper . SKI<−CM%∗%p . star+q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
242 lower . SKI<−CM%∗%p . star−q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
243 T . mctp<−( CM%∗%p . star ) / s q r t ( diag ( CV ) /N )
244
245 mctp . pvalue<−rep (0 , nrow ( CM ) )
246 f o r (i in 1 : nrow ( CM ) ){
247 mctp . pvalue [ i ]<−round(1−pmvnorm ( lower=−abs (T . mctp [ i ] ) ,
248 upper=abs (T . mctp [ i ] ) , mean=rep (0 , nrow ( CM ) ) ,
249 corr=R . hat ) [ 1 ] , 7 )
250 }
251 } ,
252 ” l e s s ”={
253
254 q u a n t i l e<−qmvnorm ( conf . level , tail=” lower . t a i l ” ,
255 corr=R . hat ) $ q u a n t i l e
256
257 upper . SKI<−Inf
258 lower . SKI<−CM%∗%p . star−q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
259 T . mctp<−( CM%∗%p . star ) / s q r t ( diag ( CV ) /N )
260
261 mctp . pvalue<−rep (0 , nrow ( CM ) )
262 f o r (i in 1 : nrow ( CM ) ){
263 mctp . pvalue [ i ]<−round ( pmvnorm ( lower=T . mctp [ i ] ,
264 upper=Inf , mean=rep (0 , nrow ( CM ) ) ,
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265 corr=R . hat ) [ 1 ] , 7 )
266 }
267
268 } ,
269 ” g r e a t e r ”={
270
271 q u a n t i l e<−qmvnorm ( conf . level , tail=” lower . t a i l ” ,
272 corr=R . hat ) $ q u a n t i l e
273
274 upper . SKI<−CM%∗%p . star+q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
275 lower . SKI<−−Inf
276 T . mctp<−( CM%∗%p . star ) / s q r t ( diag ( CV ) /N )
277
278 mctp . pvalue<−rep (0 , nrow ( CM ) )
279 f o r (i in 1 : nrow ( CM ) ){
280 mctp . pvalue [ i ]<−round ( pmvnorm ( lower=−Inf ,
281 upper=T . mctp [ i ] , mean=rep (0 , nrow ( CM ) ) ,
282 corr=R . hat ) [ 1 ] , 7 )
283 }
284
285 }
286 )
287
288 h . mctp<−data . frame ( row . names=row . names ( CM ) , Estimator=CM%∗%p . star ,
289 Lower=lower . SKI , Upper=upper . SKI , Statistic=T . mctp ,
290 p . Value=mctp . pvalue )
291 }
292
293 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 #MCTP with student−t d i s t r i b u t i o n
295 i f ( asy . method==”mult . t ” ){
296
297 CV<−CM%∗%VN%∗%t ( CM )
298 R . hat<−cov2cor ( CV )
299
300 eta<−array (0 , dim=c (q , a ) )
301 nu<−rep (0 , q )
302
303 f o r (l in 1 : nrow ( CM ) ){
304 f o r (i in 1 : a ){
305 i f ( pseudo==T ){
306 W<−matrix (1 /a , nco l=d , nrow=a∗n [ i ] )
307 } e l s e {
308 W<−matrix (n/N , nco l=d , nrow=a∗n [ i ] )
309 }
310 h1<−matrix ( as . vec to r ( Fs [ , ( sum(n [ 0 : ( i−1) ])+1) :
311 sum(n [ 1 : i ] ) , ] ) , nco l=d , nrow=a∗n [ i ] ) ∗W
312 h2<−diag (−1 ,a ) ; h2 [ i , ]<−1 ; h2 [ i , i ]<−0
313 A . li<−( d iag (1 , n [ i ])%x%t ( CM [ l , ] ) ) %∗%( diag (1 , n [ i ])%x%h2 )%∗%h1

314 eta [ l , i ]<−t ( gamma )%∗%t (A . li )%∗%P (n [ i ] ) %∗%A . li%∗%gamma

315 }
316 nu [ l ]<−sum( eta [ l , ] /n )ˆ2 /sum( eta [ l , ] ˆ 2 / (nˆ2∗ (n−1)))
317 }
318
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319
320 ft<−round (max(1 , min ( nu ) ) )
321
322 switch ( alternative ,
323 ”two . s ided ”={
324 q u a n t i l e<−qmvt ( conf . level , df=ft , tail=”both” , corr=R . hat ) $ q u a n t i l e
325
326 upper . SKI . t<−CM%∗%p . star+q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
327 lower . SKI . t<−CM%∗%p . star−q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
328 T . mctp . t<−( CM%∗%p . star ) / s q r t ( diag ( CV ) /N )
329
330 mctp . pvalue . t<−rep (0 , nrow ( CM ) )
331 f o r (i in 1 : nrow ( CM ) ){
332 mctp . pvalue . t [ i ]<−round(1−pmvt ( lower=
333 as . numeric(−abs (T . mctp . t [ i ] ) ) ,
334 upper=as . numeric ( abs (T . mctp . t [ i ] ) ) ,
335 df=ft , delta=rep (0 , q ) , corr=R . hat ) [ 1 ] , 7 )
336 }
337 } ,
338 ” g r e a t e r ”={
339 q u a n t i l e<−qmvt ( conf . level , df=ft , tail=” lower . t a i l ” ,
340 corr=R . hat ) $ q u a n t i l e
341
342 upper . SKI . t<−CM%∗%p . star+q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
343 lower . SKI . t<−−Inf
344 T . mctp . t<−( CM%∗%p . star ) / s q r t ( diag ( CV ) /N )
345
346 mctp . pvalue . t<−rep (0 , nrow ( CM ) )
347 f o r (i in 1 : nrow ( CM ) ){
348 mctp . pvalue . t [ i ]<−round ( pmvt ( lower=−Inf ,
349 upper=as . numeric (T . mctp . t [ i ] ) , df=ft ,
350 delta=rep (0 , q ) , corr=R . hat ) [ 1 ] , 7 )
351 }
352 } ,
353 ” l e s s ”={
354 q u a n t i l e<−qmvt ( conf . level , df=ft , tail=” lower . t a i l ” ,
355 corr=R . hat ) $ q u a n t i l e
356
357 upper . SKI . t<−Inf
358 lower . SKI . t<−CM%∗%p . star−q u a n t i l e ∗ s q r t ( d iag ( CV ) /N )
359 T . mctp . t<−( CM%∗%p . star ) / s q r t ( diag ( CV ) /N )
360
361 mctp . pvalue . t<−rep (0 , nrow ( CM ) )
362 f o r (i in 1 : nrow ( CM ) ){
363 mctp . pvalue . t [ i ]<−round ( pmvt ( lower=
364 as . numeric (T . mctp . t [ i ] ) , upper=Inf ,
365 df=ft , delta=rep (0 , q ) , corr=R . hat ) [ 1 ] , 7 )
366 }
367 }
368 )
369
370 h . mctp<−data . frame ( row . names=row . names ( CM ) , Estimator=CM%∗%p . star ,
371 Lower=lower . SKI . t , Upper=upper . SKI . t , Statistic=T . mctp . t ,
372 p . Value=mctp . pvalue . t )
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373 }
374
375 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
376 #Writing the ouput
377
378
379 switch ( as . cha rac t e r ( pseudo ) ,
380 ”TRUE”={est . method<−” Global pseudo ranks ” } ,
381 ”FALSE”={est . method<−” Global ranks ”}
382 )
383 switch ( asy . method ,
384 ”normal”={asy . t ex t<−” Mul t i va r i a t e normal approximation ” } ,
385 ”mult . t ”={asy . t ex t<−paste ( ” Mu l t i va r i a t e t−approximation with ” ,
386 ft , ” df ” , sep=”” )}
387 )
388 switch ( alternative ,
389 ”two . s ided ”={alt . t ex t<−” Contrasts o f adj . r e l a t i v e treatment
390 e f f e c t s are unequal 0” } ,
391 ” l e s s ”={alt . t ex t<−” Contrasts o f adj . r e l a t i v e treatment
392 e f f e c t s are l e s s than 0” } ,
393 ” g r e a t e r ”={alt . t ex t<−” Contrasts o f adj . r e l a t i v e treatment
394 e f f e c t s are g r e a t e r than 0”}
395 )
396 group . info<−data . frame ( Group=levels ( factorx ) , Observations=n )
397 rownames ( group . info )<−NULL
398
399 i f ( info==T ){
400 cat ( ”\n” , ”#−−−−−−−−−−−−−−−−Nonparametric Mult ip l e Comparisons
401 f o r r e l a t i v e e f f e c t s −−−−−−−−−−−−−−−#” ,
402 ”\n” , ”\n” , ”−” , ” Nul l Hypothes is : ” , alt . text ,
403 ”\n” , ”−” , ” Est imation Method : ” , est . method ,
404 ”\n” , ”−” , ”Type o f Contrast : ” , type , ”\n” , ”−” ,
405 ” Conf idence Leve l : ” , conf . level ∗ 100 , ”%” , ”\n” ,
406 ”−” , ”Method : ” , asy . text , ”\n” , ”\n” ,
407 ”#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
408 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#” ,
409 ”\n” , ”\n” )
410 p r in t ( group . info )
411 cat ( ”\n” , ”Number o f c o v a r i a t e s used : ” )
412 cat (d−1,” ( ” , sep=”” )
413 cat ( colnames ( dat ) [ 3 : ( d+1)])
414 cat ( ” ) ” , ”\n” , sep=”” )
415 cat ( ”\n” ,
416 ”#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
417 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#” ,
418 ”\n” , ”\n” )
419 p r in t ( round (h . mctp , rounds ) )
420 cat ( ”\n” ,
421 ”#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
422 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#” , )
423 cat ( ”\n” , ”\n” )
424 return ( l i s t ( Data . Info=group . info , Contrast=CM ,
425 Analysis=h . mctp , gamma=gamma , formula=formula , data=data . sav ,
426 Text . Output=l i s t ( null . hyp=alt . text ,
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427 est . method=est . method ,
428 contr . type=type , conf . level=conf . level , method=asy . t ex t ) ) )
429 } e l s e {
430 return ( l i s t ( Data . Info=group . info , Contrast=CM , Analysis=h . mctp ,
431 gamma=gamma , formula=formula , data=data . sav ,
432 Text . Output=l i s t ( null . hyp=alt . text ,
433 est . method=est . method ,
434 contr . type=type , conf . level=conf . level , method=asy . t ex t ) ) )
435 }
436 }
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