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Abstract

Design, setting and participants: The average risk for adverse events in patients
over 65 years old who currently take metformin as first-line treatment is compared
between those who initiated dipeptidyl peptidase-4 inhibitors (DPP4) and those who
initiated sulfonylurea (SU) as add-on treatment. Initiations between 2011 and 2018
were analysed using routine claims data from a German health insurance provider
(Barmer). Generalized linear models with overlap weighting were used to estimate the
average treatment effects in the overlap population.
Treatment: metformin + DPP4 versus metformin + SU
Outcomes and measures: Rates of combined all-cause hospitalisations and outpa-
tient visits compared via rate ratio as primary outcome and the odds for at least one
event of severe hypoglycemia within one year, death within one year and at least one
all-cause hospitalisation within 30 days as secondary outcomes.
Subgroups: new users, age>80, with severe hypoglycemia, with heart failure, with
severe renal insufficiency
Results:Among the 171,318 eligible patients, 111.865 received DPP4 and 59,453 were
in the control group receiving SU. Patients treated with DPP4 had a higher prevalence
of all selected comorbidities and were more often naive to both treatments of interest
(53% vs 21%). After applying overlap weighting, baseline characteristics including
confounding variables for treatment history were well balanced between groups. In
the main analysis, patients treated with DPP4 had a higher rate of combined all-cause
hospitalisations and outpatient visits compared with those not treated with DPP4
(rate ration, 1.03; 95% CI, 1.02-1.03).
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1 Introduction
Elderly adults often suffer from multiple chronic illnesses which often require them to take a
high amount of different medications but also lead to general frailty. This is problematic as
elderly patients are more susceptible to the adverse effects of pharmacotherapy than younger
patients due to the aging process. Efforts are taken in different countries to assemble
evidence and develop recommendations for drug therapy of elderly patients tailored to the
current practice and available options in each country. The Priscus list is the German
version and has just received an update in 2022. The publication lists medications that may
be potentially inappropriate for use in patients over the age of 65 and should therefore be
avoided [25]. Findings from RCTs and expert knowledge were assembled to select substances
that are harmful to elderly patients. Alternative medication options are presented to promote
the conversion of affected patients. There is evidence that suggests that elderly patients
who take any of the potentially inappropriate medications (PIMs) instead of alternative
substances have a higher risk for hospitalisations connected to adverse events [15]. However,
efforts to reduce inappropriate prescription behaviour could be bolstered up by more specific
knowledge about the real-world effect of deprescribing specific substances to specific groups
of patients and further research is warranted to identify those PIMs that are particulary
harmful in practice.

This thesis aims to explore the feasibility of producing such real-world evidence by conducting
observational studies using routine claims data. In the form of a proof-of-concept study
I evaluate whether the findings from the Priscus list on the superiority of dipeptidyl
peptidase-4 inhibitors (DPP4) compared to sulfonylurea (SU) can be reproduced using
an observational study. I use German routine claims data from Barmer health insurance
to estimate the average effect of taking DPP4 compared to SU as a second-line therapy
in addition to metformin on outcomes connected to adverse events. Furthermore, I aim
to identify heterogenous treatment effects in subgroups within the population of elderly
patients that might particularly benefit from taking DPP4 instead of SU.

Diabetes was chosen for this application study both because of the high prevalence of the
disease in particular in the elderly population in Germany and a relatively high level of
existing evidence on medication options. This makes it suitable for a proof-of-concept of
the target trial framework. The choice of the contrasted treatments was then primarily
guided by the Priscus list 2.0. With glimepirid, glibenclamid, gliquidon and gliclazid, four
SU are listed [25]. Gliquidon and gliclazid already had a negligible amount of prescriptions
in Germany in recent years but glimepirid and glibenclamid are still prescribed on a larger
scale although use decreased in recent years (from a prevalence of about 4.3% of the total
population of over 65 year olds in Germany in 2011 down to 1.11% in 2021 according to the
standardized prevalence in the Barmer population). DPP4 are listed as a viable alternative
medication in the Priscus list besides metformin, insulin and SGLT2 inhibitors. They are
currently one of the most commonly prescribed substance classes in Germany, in particular
among the elderly. About 3% of the over 65 year olds in Germany have received at least
one prescription of sitagliptin in 2021 (according to standardized prevalence in Barmer
population).

A recent systematic review on DPP4 conducted in the context of the Priscus list update
[13] included five randomized controlled trials on the safety of DPP4 compared with SU,
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both as add-on to standard care. The meta-analysis of these studies suggests that older
patients might benefit from taking DPP4 compared to SU as it reduces mortality and the
risk for hypoglycemia. The evidence for other outcomes like overall adverse events, risk for
hospitalization, falls or pancreatitis is insufficient [13]. The expert survey concluded that
DPP4 should be prefered over SU in elderly patients due to their better benefit-risk ratio [13]
but the magnitude of the effect is unknown because existing evidence is too heterogeneous.

Contrary to these randomised controlled trials this analysis of claims data in principle
allows an evaluation of a real-world effect within the population of interest under real-world
prescribing and treatment practices. The absence of a study context in principle increases
the external validity of the study. However, only a carefully developed design ensures the
applicability of results on the desired target population and several sources of bias have
to be eliminated to achieve internal validity. I use the concept of „target trial emulation“
that was first introduced by Hernán and Robins [18] to support the design of well-defined
observational studies with high internal and external validity. Besides using the concept
as a structure to follow, I also aim to gain insights into the methodological demands of
answering similar questions on the basis of insurance claims data.

My hypothesis was that the average risk for adverse events in patients over 65 years old, who
currently take metformin as first-line treatment, but who are in need for additional diabetes
medication, can be reduced under real-world conditions, if only DPP4 are prescribed as
secondline treatment instead of SU. I expected the magnitude of the benefit to be most
pronounced in four high-risk subgroups: patients older then 80 years, patients with a severe
renal insufficiency, patients with heart failure and patients with a recent history of severe
hypoglycemia. As a primary outcome I chose the rate of combined all-cause hospitalisations
and outpatient visits within one year as a proxy for the overall amount of adverse events and
general state of heath. As secondary outcomes I considered the odds for death within one
year, at least one event of severe hypoglycemia within one year and at least one all-cause
hospitalisation within 30 days.

In all medical aspects I received comprehensive guidance from Dr. Thürmann. Apart from
selecting the pair of substances to be compared, she also contributed her expert knowledge
to the selection of relevant confounders and provided valuable insights on the interpretation
of results. During the process of data preparation I was supported by Dr. Grobe who
introduced me to the particularities of claims data as well as the Barmer data warehouse
and provided assistance when I encountered coding problems.

In the following section I begin by outlining the theoretical foundations of comparative
treatment analysis in observational studies and the „target trial emulation“ concept (chapter
2), followed by the practical application of the method on the DPP4-SU-study with a focus
on the decisions taken choose and apply a suitable method for confounding adjustment
(chapter 3). The implementation of the study in the Barmer dataset and methods used for
statistical analysis are described in chapter 4 and 5. The results are presented in chapter 6.
Chapter 7 discusses the strengths and limitations of the study before I sum up the gained
insights in a brief conclusion.
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2 Theory

2.1 Target Trial Emulation
The design of the study follows the approach of a „target trial emulation“. The concept was
first introduced under that name by Hernán and Robins (2016)[18] and it offers a structured
approach to estimating causal effects using observational data. The central idea is to design
studies and define effects as if they were observed in a hypothetical randomized controlled
trial (RCT). The hypothetical RCT is then emulated as closely as possible. For both the
target trial and the emulation the following items have to be defined:

• Treatment strategies
• Eligibility criteria
• Assignment procedures
• Follow-up period
• Outcome
• Causal contrasts of interest
• Analysis plan

The final trial should be as close as possible to the „ideal“ trial that was designed first but
should be reasonably supported by the available data.

Hernán and Robins (2016) map out some of the most important methodological challenges of
such an emulation. Their most important insights concern the temporal order of events that
define a patients inclusion or exclusion from the trial or treatment allocation. I summarize
their findings as follows:

• Attention should be paid to both validity and interpretation of the data. This includes
verifying the reliability of information on diagnoses and the availability of confounders
in the dataset.

• Included patients have to be in database long enough to apply all inclusion criteria
prior to baseline.

• Eligibility criteria must not include post-baseline information. Events that occur after
the initiation of treatment are possibly affected by the treatment strategy itself, which
can introduce selection bias.

• On the other hand, immortal time bias can result from a delay between cohort entry
and treatment initiation, as it induces a period of follow-up during which no outcome
events or deaths can occur. Ideally, treatment initiation and inclusion should align
and occur at the same time.

• Eligible patients who do not start any of the specified therapies should be excluded
from the analysis. The resulting estimated effect is then not valid for this excluded
subpopulation. While this seems obvious, applying such an explicit procedure can
help to clarify the temporal structure if inclusion occurs prior to treatment initiation.
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• Loss-to-follow-up can be reduced by including patients who have been in regular
contact with the health care system prior to time zero. This is mainly important in
study contexts where the data stems from non-compulsory or employer-dependant
health insurance systems where individuals often have incomplete coverage for financial
reasons or frequently switch between healthcare providers.

• Only target trials without blind assignment can be emulated. Again, this is obvious,
but in some cases this can be important to consider, for instance to clarify differences
to extisting RCTs.

I try to implement these guidelines in my application study as comprehensively as possible.

2.2 Estimands
On several occasions I noticed that it is very helpful to complement the items of the
target trial framework by explicitly defining an estimand for the question of interest, in
order to clarify the argumentation when making decisions about both the design of the
target trial and the emulation. Considering the influence of methodological decisions on
the estimand definition can help to choose an approach that best fits the estimand of
interest. For instance, different methods to adjust for confounding, e.g. different matching
or weighting schemes, are connected to different target populations and population-level
summary statistics. Method and estimand mutually define each other and an exact definition
is important to allow an exact interpretation of the estimated effect as I will briefly outline
in the next chapter 2.3. I consider this specific aspect throughout the process of the target
trial definition and emulation.

Another important element of the estimand framework, besides the target population
and the definition of a population-level summary, that is not explicitly addressed in the
target trial framework, is the handling of intercurrent events. The „ICH-E9 R1 addendum
on estimands and sensitivity analysis in clinical trials“ [8], which was published by the
European Medical Agency as part of the guideline on statistical principles for clinical trials,
describes four possible strategies for handling intercurrent events. Under the treatment
policy strategy, the occurrence of the intercurrent event is considered not to be relevant
for the treatment effect. Instead it is considered as part of the treatment regimen and the
values for the outcome of interest are used, irrespectively of whether the intercurrent event
occurs or not. Therefore, the strategy is not applicable to terminal events like death, where
post-event values are unavailable. The hypothetical strategy envisions a scenario where the
intercurrent event does not occur and defines the value for the outcome of interest under
those hypothetical conditions. The goal is to understand the potential impact of various
hypothetical situations, such as the absence of additional medication or different outcomes
for subjects experiencing adverse events. Under the composite strategy, an intercurrent
event is considered to be informative about the patient’s outcome and is therefore added to
the definition of the outcome to form a composite outcome variable. When all events or
the value of the outcome prior to the intercurrent event is of interest, a while-on-treatment
strategy is chosen.

Luijken et al. (2023) [24] recently applied the „ICH-E9 R1 addendum on estimands“ to
observational pharmacoepidemiologic comparative effectiveness and safety studies. The
publication describes three case studies for different study scenarios and outlines possible
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estimands. The first scenario of the second case study corresponds to an intention-to-treat
effect of a sustained treatment and is similar to the case of the DPP4-SU study that I want
to design. The intercurrent events discontinuation of treatment, switching to an alternative
treatment and switch to intermediate-acting-insulin are handled under the treatment policy
strategy and a while-on-treatment strategy is applied to death. I proceed similarily in
chapter 3.1.

2.3 Causal effect estimation in observational studies
Just as the definition of the estimand has to be adjusted to the observational setting, the
subsequent estimation of a causal effect is not as straightforward in an observational study
as it is in an RCT. In this chapter, I briefly summarize the general procedure of estimating
causal effects and introduce possible approaches for selecting and controlling for confounders.

Causal effect estimation generally aims to estimate an average treatment effect (ATE) as
the average individual effect in a specific population. Knowing the exact individual effect
of a treatment Yi(1) − Yi(0) for an individual would be ideal, but as only the outcome of
the treatment that was actually received is known, such an estimation is impossible in
practice. Instead, the ATE is defined as the expectation E(Y1 −Y0) across all members of the
population, where Y0 and Y1 denote the potential outcomes in the absence and presence of
treatment respectively. In an RCT under random treatment allocation, E(Y1 −Y0) = Y1 −Y0
is an unbiased estimator of the ATE.

In an observational setting however, where the characteristics of patients in the treatment
group might differ from subjects in the control group, an ATE can only be estimated
in a population if the treatment assignment is strongly ignorable. According to Greifer
et al. (2023) [17], this assumption entails three conditions. The first condition, known
as „conditional exchangeability“, demands the inclusion of all relevant confounders in
the analysis, ensuring that no unmeasured confounding influences the treatment-outcome
relationship. Confounding here references to factors that are correlated with both the
independent variable (treatment) and the dependent variable (outcome), potentially leading
to bias. The second condition, „positivity“, dictates that all patients should have a non-zero
probability of receiving either treatment. The third condition, the stable unit treatment value
assumption (SUTVA), demands that the treatment status of one patient does not impact
another patient’s outcomes and no unmeasured versions of treatment exist. The SUTVA
assumption has to be accounted for in the study design. The assumption of „positivity“
does not necessarily hold for the total population of interest. If there is limited overlap
between the compared groups, the target population has to be restricted to a population in
which the assumption holds. The first assumption of „conditional exchangeability“ requires
the identification of possible confounders and their incorporation into the treatment effect
estimation by using suitable statistical methods.

There exist several approaches for selecting the set of confounding variables. In practice,
it is usually not possible to observe or even unambiguously identify all confounders, but
the validity of the observational analysis depends on how well confounding bias can be
minimized. Different approaches on how restrictive the set of confounders should be are
discussed in the scientific community. Including a large set of possible confounders bears
the risk of controlling for colliders, which introduces additional bias to the analysis [16].
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On the other hand, omitting important confounders also introduces bias. Among others,
three different sets of covariates are frequently used as possible confounders in the literature
[32]: firstly, all covariates that can be determined prior to exposure, secondly, all common
causes of the outcome and the exposure, or thirdly, all pre-exposure covariates that are
a cause of the exposure, the outcome or both. The last approach has several advantages
compared to the other two sets, as it in principle includes all relevant covariates and thus
always sufficiently controls for confounding if the true set of confounders is in fact observed
[32]. However, depending on the availability of variables in the data and existing knowledge
of the causal mechanisms, there often remains some unobserved confounding. In such cases,
unnecessarily controlling for causes of the exposure that are not related to the outcome other
than through the exposure, so-called instruments, can reinforce the bias introduced by the
unmeasured confounders [32]. Taking this additional aspect into account, Vanderweele et al.
(2019)[32] proposed the following, practically applicable strategy for confounder selection:

1. Control for each covariate that is a cause of the exposure (choice of treatment), of the
outcome, or of both

2. Exclude from this set any variable known to be an instrumental variable (effect on
exposure but not outcome)

Adjustment for the selected confounders can be conducted using three general approaches:
outcome regression, instrumental variable analysis or propensity score methods. Outcome
regression is widely used, but has disadvantages with respect to interpretation of the
estimated effect. Targeting specific estimands is difficult and can only be validly achieved
by using additional methods, notably g-computation [17]. Instrumental variable analysis
targets the average effect in the population of patients who comply with the treatment
recommended to them, which is not often the population of interest in medical studies. In
the following chapter I will therefore only consider propensity score methods in more detail.

2.4 Propensity score methods for confounding adjustment
Propensity scores are estimated by modeling the probability of treatment assignment based
on observed covariates. The covariate distributions are then balanced between the groups
by using either one of two general approaches: matching and weighting. Both approaches
aim to achieve covariate balance between the treatment and control group. Matching on the
propensity score involves pairing treated and control units with similar propensity scores.
The resulting population often has well-balanced covariates. However, the high precision
comes at the cost of potential sample size reduction, as not all treated units may find
suitable matches.

Weighting on the other hand assigns different weights to units based on functions of their
propensity scores. Zhou et al. (2020)[37] define different weighting methods in terms of a
tilting function h(x) that transforms the distribution of covariates in the sampled population
to a target distribution of interest: If f(x) is the sampled distribution, then the target
distribution is defined as f(x)h(x). With fz(x) = Pr(X = x|Z = z) = e(x) as the density
of covariates in group z, balancing weights w(x) can create a balanced covariate distribution
between group 1 and 0 when f1(x)w1(x) = f0(x)w0(x) = f(x)h(x). As the propensity score
e(x) is defined as Pr(Z = 1|X), a general definition of a weight given a tilting function h(x)
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and a treatment indicator Zi for observation i can be written as:

wi(x) = Zi
h(x)
ei(x) + (1 − Zi)

h(x)
(1 − ei)

(1)

The weighted average treatment effect over all considered observations i is then equal to

∆h = E[h(X)(Y (1) − Y (0))]
E(h(X)) (2)

When the treatment effect is constant across the entire population, the weighted average
treatment effect is the same for all tilting functions h(x). However, under heterogenous
treatment effects the choice of tilting function has to match the target population which is
either of interest or statistically optimal.

The simplest case is a tilting function h(x) = 1 which corresponds to the ATE in the
sampled population without any re-distribution of the population. The corresponding very
established weighting scheme is called „Inverse Probability of Treatment weighting“ (IPW)
where the weights correspond to the inverse probability of treatment:

wi(x) = Zi
1

ei(x) + (1 − Zi)
1

(1 − ei)
(3)

Alternative, well established tilting functions are h(x) = e(x) and h(x) = 1 − e(x) which
correspond to the average treatment effect on the treated (ATT) and the average treatment
effect on the untreated (ATU) respectively. However, all three functions have limitations
when the positivity assumption is violated. When there is a large proportion of extreme
propensity scores equal or close to 0 or 1, these individuals get assigned large weights as
the weights are calculated by dividing by the propensity score. Extremely large weights
overemphasize the influence of these observations on the estimation of the treatment effect.
As Zhou et al. (2020)[37] deduced in detail, the asymptotic variance of the IPW estimator
gets very large in these cases. Furthermore, if extreme weights occur in combination with
heterogenous treatment effects and a misspecified propensity score model, the bias caused
by the misspecification is reinforced. A common solution is to trim the PS-distribution at
the edges to exclude extreme propensity scores. This can however substantially reduce the
sample size [21].

A promising method that has not yet been studied and applied as extensively are balancing
weights that target the population of patients with clinical equipoise, namely overlap weights
(OW), matching weights and entropy weights. The targeted population of patients with
clinical equipoise relates to the population of patients for whom both treatment options
are currently considered in practice but where the treatment decision is less certain. Each
patient’s overlap weight is the probability of that patient being assigned to the opposite
group [21]:

wi = Zi(1 − ei) + (1 − Zi)ei (4)

Unlike inverse probability of treatment (IPT) weights, these weights do not involve the
inversion of probabilities and can only take values between 0 and 1. They are designed
to tilt f(x) towards a propensity score of 0.5 [37]. The three methods differ only in how
sharply the tails of f(x) are weighted down. As was deduced mathematically by Zhou
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et al. (2020)[37], OW, matching weights and entropy weights clearly outperform IPW
weighting asymptotically in settings with propensity scores e(X) ≈ 0 or 1. Such extreme
observations get assigned weights near 0 and therefore do not increase the variance or
add much additional bias in case of propensity score misspecification. Compared to IPW
with trimming, OW lead to lower bias, as extreme propensity scores are not omitted and
the need for an arbitrary data-driven choice of cutoffs and mode of trimming is avoided.
Simulations conducted by Zhou et al. (2020)[37] confirmed these asymptotic properties.
While all three analysed balancing weights outperformed IPW, overlap weighting provided
the most efficient estimate. OW were also more accurate and efficient in simulation studies
under propensity score misspecification, unless a very important confounder was omitted
which none of the methods can handle [37],[28]. Furthermore, as the target population
is not defined a priori, methods targeting the overlap population can also be useful for
estimating a precise and robust estimand in settings where no specific hypothesis on the
characteristics of the population of interest exists. An example might be a study that aims
to discover whether at least some patients benefit from a treatment while the treatment is
clearly not appropriate for other subgroups [17].

Once sufficient covariate balance between the groups has been achieved through weighting,
the weighted observations are used to estimate the average treatment effect. A straightfor-
ward approach is to calculate the difference in the weighted means of the outcome variable
between the treatment and control groups. For effect measures other than the difference in
means, a weighted generalized regression model g(µi) = β0 + β1Ti with the treatment indica-
tor Ti as the independent variable and a link function g() that is suitable to the outcome type
is chosen as suggested by [29]. In principle, any parametric or non-parametric model can
be used. In the presence of non-linear relations and complex interactions, non-parametric
models can offer more flexibility. To account for the violation of the homoskedasticity
assumption of the maximum likelihood estimation caused by the use of weights, robust
standard errors should be used. Another more complicated but potentially superior method
is to use bootstrapping if sufficient computational resources and time are available.

If there is a risk for a severely misspecified propensity score model, substantial unobserved
confounding or if the covariate balance after propensity score weighting is still insufficient,
a doubly robust method can improve the validity of the causal analysis. The idea behind
doubly robust estimates is to specify both a propensity score model and an outcome model.
As long as one of the two models is specified correctly, the causal effect estimation is valid.
One doubly robust approach that is often recommended [12] is to use targeted maximum
likelihood estimation and conduct a g-estimation as an additional step after fitting the
outcome model. The outcome model is defined as the ’Q-model’ which is used to predict
the counterfactual outcomes under each of the two treatments alternatives. The resulting
„full“ dataset is then used to calculate the causal estimate as the contrast of the two average
estimated potential outcomes. G-estimation also the advantages that it offers flexibility to
analyse and compare different types of outcomes and outcome models using an identical
workflow where only the outcome model has to be adjusted each time.
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3 Application of the concept of target trial emulation
In the following chapter I apply the comprehensive process of a „target trial emulation“ to
the DPP4-SU study case. The five essential elements of the target trial defined by Hernán
and Robins [18] are specified in chapter 3.1, followed by a description of the decisions
taken to emulate the target trial (3.2). As I conduct an observational analysis and, more
specifically, use routine claims data that were not created for research purposes, I can not
replicate the target trial exactly as it was specified. The last subchapter outlines the process
of confounder selection (3.3. The target trial that I designed in the very first step was the
basis for a study protocol that I got approved by the responsible ethics commission in July
2023 (Appendix 9).

3.1 Definition of the target trial and estimand
I defined a target trial by following the recommendations given by Hernán and Robins
(2016)[18]. They name seven essential elements that need to be defined: the definition of
eligibility criteria, treatment strategies, assignment procedures, the follow-up period, the
outcome, the causal contrast of interest and an analysis plan. Table 1 defines these elements
for our study. Table 2 supplements four additional elements that describe the estimand in
more detail. The structure and definitions correspond to considerations outlined by Luijken
et al. (2023) [24], who applied the „ICH-E9 (Statistical Principles for Clinical Trials) R1
addendum on estimands“ to observational pharmacoepidemiologic comparative effectiveness
and safety studies.

Prevalent users of both DPP4 and SU are included, as the study targets elderly patients
who have usually already been suffering from diabetes type 2 for many years and thus rarely
start an entirely new treatment. Existing literature on „target trial emulation“ encourages
the exclusion of prevalent users to reduce potential bias, but in order to answer my research
question it does not make sense to generally exclude these long-term users as the study
population would then be limited to a unrepresentative subgroup of patients. Thus, I cannot
avoid difficulties by switching to a new-user design and instead need to try to reduce bias
as well as possible and be mindful of possible remaining bias. I also decided to control for
covariates that might be influenced by prior treatment, more specifically I included the
variable severe hypoglycemia as a confounder in all analyses except for the outcome risk for
severe hypoglycemia within one year. The latter is likely to be more severely impacted by
potential collider bias. I briefly take up this question in chapter 7, but the topic warrants
further consideration and discussions.

As a primary outcome I selected the composite outcome all-cause hospitalisations and
physician visits within one year. The secondary outcomes 1-year risk of severe hypoglycemia
while alive and 1-year risk of all-cause mortality are more specific endpoints. The risk for
severe hypoglycemia is the main event that is supposed to be reduced by any diabetes
medication, so this endpoint reflects the efficacy of the treatments. The mortality risk
on the other hand is a more rigorous endpoint that should reflect any difference in severe
adverse events between the two treatments. The occurrence of all-cause hospitalisations
within 30 days is supposed to represent a potential serious short-term effect, especially
in new initiators. All three secondary outcome are binary and odds ratios are used as a
measure of effect.
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The definition of an appropriate estimand is another consideration that is also affected
by the inclusion of prevalent users. The treatment decision between DPP4 and SU is
currently primarily decided due to personal preference of the physician rather than other
criteria like comorbidities or patient risk factors. Thus, the ATT and ATU are not of
interest here, as they strongly depend on current prescribing practice. The hypothesis is
that DPP4 are superior to SU in all patients. I designed the hypothetical intervention as a
system-wide Priscus-informed medication review that is supposed to address all eligible
patients, irrespective of their prior treatment. Thus, I am in principle interested in the
ATE, the effect in the total population. However, the ATE requires the strictest adherence
to the assumptions of „conditional exchangeability“, „positivity“, and „SUTVA“ as no
restriction of the population is allowed if the effect is to be valid for the entire population. If
assumptions are violated adequate covariate balance can not be achieved. The „positivity“
assumption in particular might be a critical issue in our case. As I decided to include
prevalent users of the treatments, the treatment history will be an influential confounder.
Patients and physicians have a high preference to continue the current treatment. It also
makes sense from a medical perspective not to reevaluate a patients treatment at every visit
as long as medical preconditions did not change drastically. However, the inclusion of the
treatment history as a supposedly very influential confounder might lead to limited overlap
which is a violation of the positivity assumption. I therefore chose the average treatment
effect in the overlap population as a population-level summary.
Overlap weighting as a method that defines a population of clinical equipoise without
requiring a prior active restriction from our part is also useful to define the real-world
population of interest. The variables we chose as confounders are supposed to influence the
treatment decision in the sense that they are risk factors for adverse events confirmed by
expert judgment and often also randomized controlled trials and other studies. However,
the extent to which each factor is considered in practice is not clear.

Most intercurrent events are handled under a treatment policy strategy. The only exception
is death before end of follow-up for which I use a while-on-treatment strategy. For the
primary outcome this means that the number of hospitalisations and physician visits is
counted up to the date of death, resulting in a relatively low count for patients who die
early. This handling is not optimal, as the treatment effect has to be interpreted more from
a healthcare system perspective than from the patient’s perspective as I discuss in more
detail in section 7.2. A patient who dies before the end of follow-up will not use any more
resources. While these saved resources may lower the overall costs on the system level this
is clearly a negative outcome from a patients’ perspective. This has to be taken into account
when interpreting the estimated effects while the importance of this aspect depends on the
mortality rate and effect of treatment on mortality present in the dataset. An extension of
the approach is to introduce an offset to the outcome model that accounts for the varying
lengths of follow-up. I estimate such a model for the primary outcome as a sensitivity
analysis. If the follow-up lenghts differ a lot between the two groups, this approach would
be more appropriate to ensure the effect still reflects the question of interest. On the other
hand, the additional parameter makes the model more complex which might complicate the
interpretation of the resulting estimand.
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Table 1: Definition of the target trial

Eligibility
criteria

Eligibility of clusters:
German physicians who treat diabetes patients (both general practitioners
and specialists)

Physicians identify eligible patients and conduct one medication review
at the next appointment.

Patient eligibility:
1) at least 65 years old
2) currently takes metformin
3) needs SU or DPP4 as additional treatment according to assessment of
the physician (no contraindication against glibenclamid, Glimepirid or
DPP4 and no clear indication to prescribe a different additional treatment

Current users of the intervention or control treatment are included. Their
individual risk profile is reassessed and they might be assigned a different
medication than before

Treatment
Strategies

Intervention: Priscus-informed prescription of medications that will usu-
ally result in intake of DPP4

Control: Standard of care that will usually result in prescription of SU to
some patients

Treatment
Assignment

Physicians are randomly assigned to one strategy and are aware of their
strategy.

Physicians start identifying all their eligible patients at the start of the
trial. For the duration of a recruitment period, physicians also include any
new patients as soon as they fulfill the criteria. Each patient is included
only once when he/she is first eligible.

Outcomes • 1-year number of all-cause hospitalisations and all-cause outpatient
visits (as composite outcome) while alive

• 30-day risk of all-cause hospitalisation while alive
• 1-year risk of hypoglycemia while alive
• 1-year risk of all-cause mortality

Follow-Up From treatment assignment until death, loss-to-follow-up, or end of follow-
up (1 year after scheduled chart review), whichever occurs first.

Causal
contrast of
interest

Intention-to-treat effect (of prescribed treatment)

Analysis
Plan

Intention-to-treat effect estimated as rate ratio (primary outcome) and
odds ratio (secondary outcomes) of outcomes.
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Table 2: Definition of the estimand

Population
of interest

Whole population of patients over 65 years old, who currently initiate
SU or DPP4 as add-on medication to metformin or who need to initiate
SU or DPP4 as add-on treatment to metformin, and who have a similar
distribution of prior duration of intake, treatment adherence and dosing
to the study sample.

Intercurrent
events

...handled under treatment policy strategy and considered as part of the
treatment regimen:
• switch to alternative treatment
• early treatment discontinuation
• hospital stay
• new initiation of other medication that can also cause adverse events
• change of disease status that requires additional or different treatment

(treatment escalation)

...handled under the while-on-treatment strategy:
• death during follow-up

Population-
level sum-
mary mea-
sure

ATE in patients with clinical equipoise (overlap weights)

Estimand
stated as
a research
question

What would be the difference in adverse outcomes if all elderly patients
who require additional medication to metformin had participated in a
Priscus-informed medication review which would result in initiation of
treatment with an DPP4 inhibitor, compared to if they had not received
such a medication review and continued treatment with SU?
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3.2 Reducing bias caused by emulation
In the following I outline the study design of the emulated trial. I discuss the most relevant
of the aspects outlined in chapter 2.1 that were identified by Hernán and Robins (2016)[18]
as being especially important for bias reduction when emulating a trial with routinely
collected data.

By first defining a hypothetical RCT I aimed to avoid as much bias as possible without
following any predefined “good practice” design. Rather than reproducing existing designs
for observational studies I primarily tried to emulate the target RCT as closely as possible.
Figure 1 visualizes my final study design. The structure of the diagram is modeled on
the study diagram that was suggested in the Structured Template and Reporting Tool
for RWE (STaRT-RWE) studies on the safety and effectiveness of treatments [34]. A
public-private consortium created the template on behalf of the International Council
for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH).
It provides a guiding tool to enhance the reproducibility of RWE studies, support the
transparent communication of methods and reduce misinterpretation. Besides the detailed
study design it also includes information on the exact definition of all inclusion criteria,
confounders and analysis plans. I completed the template for this study and appended it in
the zip-file that also contains all skripts. The start and end of the trial was defined following

Figure 1: Study design of the emulated trial

primarily practical considerations. In principal, data from 2005 until 2022 were at disposal.
The earliest meaningful year to start is 2007, as this was the year the first DPP4 inhibitor
was marketed in Germany. Other DPP4 products followed shortly after (Sitagliptin in
2007 [4], Vildagliptin 2008 [5] and Saxagliptin in 2009 [3]. Also, to ensure comparability
of the data, e.g. to avoid influences of health-political decisions about data management
and other practical reasons, I restrict the study period further to 2009-2018. Especially
our main outcome, the number of healthcare contacts, is majorly affected by changing
documentation rules. In 2008, a new billing concept („pauschalisierte Versorgung“) was
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introduced. This resulted in a lower number of contacts per patient and quarter than in the
previous years as only one contact per patient can now be invoiced at the health insurance
provider by each physician [1]. Thus, it is no longer possible to deduct the number of days
with contacts from the documented data. Additionally, starting from the fourth quarter of
2008, direct settlement for joint laboratories („Direktabrechnung der Laborgemeinschaften“)
was introduced. Laboratory services now have to be billed separately from other services [1].
This led to a higher number of total documented cases. To ensure that all baseline covariates
are measured in a comparable way, I set the start of the trial to 2011 with 2009-2010 as
pre-baseline period. The end of the follow-up was set to 2019 with an end of recruitment in
2018, as this avoids all periods influenced by the coronavirus epidemic. Again, especially
our main outcome but also all areas of the health system were severely impacted by the
pandemic and data were not comparable to prior periods.

Immortal time bias and selection bias are avoided in this study as each participant gets
assigned a personal time zero. The patient is assigned to the treatment strategy that is
initiated the first time this participant meets the inclusion criteria. Only data prior to each
index initiation are used to determine eligibility. The baseline assessment is carried out
up-to and on the day of treatment initiation and participant follow-up starts on the day of
initiation.

One of the inclusion criteria is a simultanous treatment with metformin. In the hypothetical
RCT, a treatment plan is devised by the physician and fixed before treatment allocation, so
he or she can actively select those patients who are in need for add-on treatment and who
are supposed to continue taking metformin in the future. As the treatment plan can not
be controlled in an observational study, I will check whether the initiation of the add-on
treatment falls within the active days supply of the last metformin prescription. This
procedure follows the approach from a “refill pattern method” developed by Liu et al. (2016)
[23]. The implications of this implementation are discussed in chapter 7.2.

3.3 Confounder selection
In comparative analysis of treatments in general, but particularly in this case, it is complex
to identify all causes of the outcomes but more straightforward to identify the causes of
the exposure. Therefore, we used the general method for confounder selection described
in chapter 2.3 but focus on identifying all covariates that cause the exposure instead of
trying to also select additional covariates that primarily cause the outcome. Causes of
the exposure here are factors that influence a physicians decision for one treatment or the
other. A physician who prescribes in compliance with the Priscus list 2.0 [25] should always
prefer DPP4 over SU in patients over 65 years independently from dosing, treatment plan
or prior treatment with the exception of contraindications. However, in real-world practice
SU were and still are prescribed frequently. Thus, the task of choosing an appropriate set
of confounders aims at identifying those decision criteria that were used by physicians in
everyday-practice during the study period. To get an exposure set that is as comprehensive
as possible, expert knowledge from three different sources was combined:

1. Factors that are recommended as decision criteria in the current guidelines for treat-
ment of diabetes [9] & [7]. The current S3 guideline defines risk factors that should
be taken into account when choosing the treatment.
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2. Factors that were considered in Table I of relevant RCTs. To identify RCTs I did
not conduct a literature review but used an existing systematic review on the safety
of DPP4 compared with SU that was conducted in the development process of the
Priscus list 2.0 [13].

3. An expert (Dr. Thürmann) checked and extended the list with her expert knowledge.

In the next step we determined which variables can be found in our data, how comprehen-
sive the representation of each variable is and I drew a causal directed acyclic graph to
identify potential instrumental variables using the browser-based program DAGitty v3.1 [2].
Dr. Thomas Grobe (aQua) provided advice on the reliability of the representation of each
of the considered factors in claims data. A complete list of factors considered in the expert
review and the comments on reliability can be found in Table 6 in the Appendix.

Only three comorbidities are specified as contraindications for one of the two treatment
options according to the summaries of product characteristics. The diagnoses severe renal
insufficiency and severe liver insufficiency are contraindications for glibenclamid. The
Priscus list 2.0 also states these as comorbidities that should be avoided and both are
also mentioned as critical factors in the current S3-guidelines. Pancreatitis is a severe side
effect of DPP4, after which the treatment should be discontinued or switched. The extent
to which physicians take any other factors into account is more ambigous and certainly
also varies a lot between different physicians. The summary of product characteristics of
glibenclamid [6] and also the Priscus list 2.0 advise particular caution and monitoring in
the presence of several factors that increase the risk for hypoglycemia, among others an age
over 65 years. The summary of product characteristics also mentions that beta-blockers
can disguise the symptoms of hypoglycemia.

The existing guidelines on diabetes treatment [9] & [7] provide general factors that should
influence the treatment decision but no specific criteria to choose between different options
for second-line diabetes treatment. The S3 guideline for type 2 diabetes is currently under
revision but the relevant chapter on medication therapy was published in 2021 [9]. The
guideline recommends a specified treatment algorithm. Both DPP4 and SU should only
be prescribed as second-line treatment in addition to metformin if the patient’s individual
therapy target is not achieved. Metformin is recommended as first-line treatment for all
patients except for contraindications. Patients with a diagnosis of cardiovascular diseases
should receive a combination therapy with metformin and SGLT2 inhibitors or GLP1-
analogues. Otherwise, the choice of additional treatment depends on personal risk factors
that are individually assessed. The risk should be assessed on these 14 criteria (translated
from the German S3-guideline):

• biological age
• sex
• diabetes duration
• lifestyle/diet/lack of physical activity
• family/genetic predisposition
• hypertension
• dyslipidemia
• adipositas
• kidney insufficiency
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• albuminuria
• smoking status
• strong metabolic instability and severe hypoglycemia
• left ventricular hypertrophy
• subclinical arteriosclerosis or subclinical cardiovascular disease

There also exists a S2k guideline on diabetes in elderly patients from 2018 [7]. The level
of evidence of this guideline is generally lower than for the general S3 guideline, which
underlines the relevance of focusing research directed at elderly patients. Nevertheless, the
guideline provides further arguments for choosing DPP4 as the treatment of interest instead
of other options. DPP4 are generally recommended also for elderly patients. In contrast,
the guidelines state that SGLT2 inhibitors are not indicated in patients with impaired renal
function, which is a common condition among elderly patients. In addition, several side
effects of SGLT2 inhibitors appear to be more prevalent among elderly patients [7]. When
risk factors are respected they have advantages, e.g. no increased risk for hypoglycemia,
and thus are very commonly prescribed also among elderly (≈ 3% of over 65 year olds
in Germany according to standardized Barmer population). GLP1-analogues are also
not generally recommended for elderly patients due to the necessity of injection and side
effects like nausea and weight loss, but they can be used in particular cases [7]. This is
consistent with the recommendations of the Priscus list 2.0, which does not mention GLP1-
analogues as an alternative medication for elderly patients. We used these criteria as a first
proposal in the selection of possible confounders as these are factors that physicians take
into account when deciding which treatment they prescribe. However, the criteria in the
guidelines are very vague and thus needed to be complemented by the exact information on
contraindications from the summary of product characteristics and expert knowledge of the
current prescribing practices.

Table 3 provides the final list of 16 expert-selected confounders and their representation in
the data. All diagnoses are coded according to the German modification of the international
classification of diseases 10th revision (ICD-10-GM). The ICD-10-GM was valid in Germany
during the entire study period. The translation of some of the diagnoses to ICD10 Codes
follows the coding algorithms used in Wilke et al.(2014)[36] [11]. The causal directed acyclic
graph (DAG) shown in Figure 2 was designed based on the final list of confounders. All
comorbidities and the co-medication betablockers clearly influence both the treatment and
the outcome and should be included as confounders (bottom left corner of the graph).
We also controlled for the most recent prescription and the time under each of the two
treatments by including the total amount of prescribed daily defined doses (DDD) in the
past two years. Ethnicity, the estimated glomerular filtration rate (eGFR) and diabetes
duration were identified as confounders, but are not represented adequately in the data. As
claims data generally do not include laboratory values and medical test results the eGFR is
only indirectly represented in the data in the form of ICD-10-GM diagnosis code N18.x.
The subcategory (3rd digit) denotes the stage of a chronic kidney disease where the eGFR
is the distinguishing criterion. Codes N18.4 and N18.5 correspond to severe cases of renal
insufficiency with an eGFR below 30 ml/min, which are taken into account by the included
confounder severe renal insufficiency. Diabetes diagnoses and therefore in principle also the
prior duration of diabetes are present in the data. However, as only a pre-baseline period
of two years is considered, the duration will be severely left censored for most patients.
Diabetes type 2 as a chronic disease develops and remains present in a patients medical
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history over long periods of time, often decades or even the entire lifespan. Therefore, a
period of two years is much too short to identify the true onset of the disease. Also, a lack
of diagnoses codes at the beginning of the observation period does not necessarily imply
that the disease first started later, as chronic diseases are often not consistently encoded by
physicians at every visit.

Table 3: Final list of confounding variables and their representation in the data

variable in data ICD-10 code/ comment

age yes

sex yes no evidence, but generally important

ethnicity no

diabetes duration no too severely left censored
(max. 2 years pre-baseline)

severe hypoglycemia yes E11.61, E12.61, E13.61,
E14.61, E16.0, E16.1, E16.2

heart failure yes I50.0, I50.1, I50.9,
I11.0, I13.0, I13.2

myocardial infarction yes I21, I22

lipid disorder yes E78

Coronary Artery Disease:
old myocardial infarction yes I25.2
stent or bypass yes Z95, I25.1

hypertension yes I10, I11, I12, I13, I15

leftventricular hypertrophy yes I51.7

severe renal insufficiency yes N18.4, N18.5

eGFR no

adipositas yes E66, potentially underreported

severe liver insufficiency yes I85.0, I86.4, K70.4, K71.1, K72.1,
K72.9, K76.5, K76.6, K76.7

pancreatitis yes K85

Beta- blockers yes C07

treatment history yes 5 variables: current DPP, current SU,
time DPP, time SU, time metformin

21



Figure 2: Directed acyclic graph (DAG) with Treatment (green with triangle), outcome
(blue), confounders (white) and other causes of treatment (green). Open causal
pathways are red.
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4 Data source and implementation
I used data available in the Barmer scientific data warehouse (W-DWH). All datasets were
pseudonymized by Barmer. Re-identification of an insured person can only be conducted by
authorized Barmer employees. All data processing and analysis was conducted via secured
remote access inside the data warehouse so that a linkage of data with other sources was
not possible. The source files of the database could only be viewed but not accessed directly.
Any direct download of datasets was prohibited and technically not possible. Results tables
and aggregated data without personal references that are in the narrow sense connected
to the research project could be downloaded on a personal computer on request by an
authorised person. The data usage approval is part of the research partnership between
Barmer and aQua GmbH as I used the same personal access to the data warehouse also for
another project within the scope of my employment at aQua GmbH. The usage approval
was extended to this master thesis by Barmer.

The preparation of the data and calculation of covariates was conducted in SAS (Version
9.4.4). For the statistical analysis I used R (Version 4.2.0). A zip-folder is appended that
contains all skripts.

Available datasets include pseudonymised information on all persons insured by Barmer
health insurance between 2005 and 2022 e.g. 1) demographics (longitudinal), 2) medical
prescription data, 3) ambulatory data, 4) inpatient and outpatient hospital data, 5) thera-
peutic remedies and aids, 6) care data, 7) incapacity to work data, 8) dental data. Relevant
for the implementation of the planned study were information from 1) to 4).
The insurance history is captured in the database in the form of single insurance episodes
that sometimes overlap or continue on seamlessly. To better capture the practically relevant
periods with or without valid insurance, it was necessary to create an aggregated table that
includes completed episodes with aggregated information. I was able to use an existing
table prepared earlier within other projects.

The basic identification level is an ID-Variable that each insured person gets assigned when
a new insurance contract is concluded. In principle, each person should be identifiable
with the same number for life. However, new temporary numbers often get assigned when
persons for instance switch their insurance provider and later come back to Barmer. The
temporary identifiers are regularly consolidated with the lifetime identifiers. Nevertheless,
prescriptions or cases are sometimes identified only over the temporary ID. This makes it
necessary to manually create a masterdata file that connects the relevant lifelong ids with
all associated temporary ids.
Prescription data are directly identified by the person-ID. Diagnoses on the other hand
belong to ambulatory or hospital cases that are identified via a combination of person-ID
and a case number. Case numbers alone are not sufficient to identify all diagnoses of a
specific patient as the case-IDs sometimes get reassigned.

As specified in the study design in chapter 3.2, I applied the inclusion criteria to distinct
initiations of either DPP4 inhibitor or SU. Thus, the first data extraction step was to create
a table with all such initiations within the time period of interest 2009-2019. Subsequently,
each initiation gets assigned the corresponding lifelong ID number from the self-created
masterdata, if possible. A few initiations (about 0.4%) could not be matched and were
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excluded already at this point. By means of the lifelong ID other information associated
with each initiation could now be added subsequently to check the eligibility of inclusion
and to add covariates. Some relevant variables like age, gender, time-to-death or the number
of days with valid insurance can be calculated using simple operations after merging the
corresponding masterdata and insurance table to the table of initiations. Some factors that
serve as inclusion criteria or confounders require more extensive operations. I prepared
pseudo-code before writing the actual skripts to ensure all operations are carried out in
appropriate order and achieve the intended goals. In the following I briefly depict some of
the most important and complicated tasks.

One inclusion criterion is that the patient takes metformin as a firstline treatment. I
chose an approach that focuses on checking the overlap between the end of the metformin
prescription and the date of the index initiation as is justified in more detail in chapter
7.2. Two prescriptions overlap if the coverage period of the prior prescription of metformin
extends beyond time zero with a tolerance of 20%. This means that at least 80% of the
time in between the two prescriptions is covered. Coverage is calculated as the medication
possession ratio: the number of days’ supply of medication that was prescribed in the time
period, divided by the number of days in the time period. The number of days’ supply is
calculated using the prescribed DDD. As the study is conducted on an elderly population
with a high prevalence of reduced renal and liver function, I adjusted the DDD and assumed
only half of the defined dose to better reflect the actual average dose of metformin prescribed
to this population. A similar algorithm was useful to determine the current treatment status
of each patient immediately prior to personal time zero. Any prior prescription of DPP4 or
SU that has overlap with the date of the index initiation (with 20% tolerance) is designated
as a current treatment. The full DDD is used here as renal and liver insufficiency influence
the dosis of DPP4 and SU to a much smaller extent as for metformin.
The duration of prior treatment with DPP4, SU and metformin is simplified to the time
since first initiation of the respective treatment within the observation period. Accordingly,
potential gaps in treatment are ignored. I also considered more complicated solutions. For
instance, the time could be calculated by determining the maximum time that is covered by
a medication possession ratio of at least 80%. However, while this approach would contain
more information, it would have a less straightforward interpretation, as it does not capture
the whole extent of different treatment histories.
The identification of diagnoses associated to each included initiation required some consid-
erations with regard to the efficiency of the skript. The datasets containing ambulatory
diagnoses are extremely large as each of the included patients had approximately 15 physi-
cian visits per year and many diagnoses are recorded at each visits. Iterating through the
entire tables to merge diagnoses to specific patients can easily result in calculation times
of several days to weeks. Therefore, it was extremely important to reduce the size of the
datasets as much as possible prior to any merging. I could substantially reduce the necessary
calculation capacity in in the very first step by applying filters that only kept lines with
those diagnosis codes I was interested in. Creating a dataset that included all relevant prior
diagnoses from the 2-year pre-baseline period for each of the included patients then only
took about 14 hours of calculation over night.
Finally, in one of last steps, information from the ambulatory and inpatient sector had
to be merged to generate the final covariates and outcomes. Ambulatory diagnoses in
particular are not always reliable in the sense that single incorrect diagnoses are common.
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A common practice is to check that diagnoses from the ambulatory sector occur in at least
two subsequent quarters. As a slight simplification I require diagnoses to occur at least
twice within the relevant period to be valid, as incorporating the timing of diagnoses just
for this issue would require considerable additional effort and no major gain in precision is
to be expected.
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5 Statistical Analysis

5.1 Confounding adjustment
Confounding adjustment through propensity score weighting was conducted. The log-odds
of the propensity scores e(x) were estimated using a generalized linear model with logit link
function:

log
(

e(x)
1 − e(x)

)
= β′x

with β as the vector of j coefficients including an intercept and the identified confounders
as covariates xj

confounders = {age, sex, heart failure, adipositas, coronary artery disease, leftventricular
hypertrophy,lipid disorder, myocardial infarction, pancreatitis, severe liver
disease, severe renal insufficiency, betablockers, current SU, current DPP
+time SU, time dpp, time_metformin}

(5)

To decide which weighting method is best suited to balance the covariates and to determine
the extent of overlap between the two groups I plotted and analysed the propensity score
distribution. I used the R package PSweight as it includes diagnostic tools to analyse
covariate balance and visualize overlap. As described in chapter 2.3 the weighting method
that corresponds to the ATE in the combined total population is inverse probability weighting
[21]. However, in the presence of a large proportion of extreme propensity scores, OW
outperform inverse probability weights. As recommended by Zhou et al. (2020)[37] I therefore
considered OW as the method of choice if extreme propensity scores are encountered. In
any case, I applied both IPW and overlap weighting to compare the differences in achieved
covariate balance. The balance of covariates between the treatment and control group that
is achieved through weighting was assessed using standardized absolute differences. Most of
the confounders are binary variables for which the balance between groups was measured
as the standardized difference in proportion. For continuous variables standardized mean
differences were calculated and the covariate balance was additionally assessed using the
variance ratio and the p-value from a two-sample Kolmogorov-Smirnov test.

5.2 Effect estimation
Average treatment effects in the population with clinical equipoise were estimated by re-
gressing the treatment on the outcome variable in the weighted population. In cases like
this one where I do not control for any additional covariates in the outcome model, the
coefficient for the treatment variable estimated by the outcome model is identical to an
estimate that would be produced by a g-estimation [29].
Before defining an appropriate effect measure for the primary outcome I considered the dis-
tribution of the outcome as it is a count variable. Count outcomes often violate assumptions
of ordinary least squares regression, namely conditional normality and homoskedasticity
so that standard errors and tests of significance will be biased. Even so count data with
a relatively high mean less often violate these assumptions, it is important to consider
the outcome distribution in order to ensure an appropriate effect estimate is used. The
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standard estimate for a continuous outcome is the absolute difference or ratio of means.
However, if the outcome variable is skewed or displays excess positive kurtosis, a poisson or
negative-binomial model is more appropriate. A negative binomial model with a log-link
function estimates the rate ratio exp(β1):

log(µ) = β0 + β1T (6)

where µ is the expected count and T is the treatment indicator variable with the coefficient
β1 and intercept β0.
The secondary outcomes are all binary and odds ratios π

1−π
were estimated using regression:

logit(π) = β0 + β1T (7)

where π is the probability of success (event coded as 1).

The weights were incorporated into the likelihood estimation in a similar way as balancing
weights in a survey design. I used the R package „survey“ with the function „svyglm()“.
The function estimates generalized linear models with robust standard errors, which are
necessary to account for the additional error produced by the estimation of the weights.
The survey package produces conservative standard errors by using Horvitz-Thomson-type
standard errors, which are a generalization of the ’sandwich’ estimator.

5.3 Sensitivity Analyses
An e-value was calculated for all effects to assess the robustness of the estimates to potential
unobserved confounding [33]. To determine how the handling of the intercurrent event of
death before end of follow-up influences the primary outcome, I estimated an alternative
model for the rate ratio that includes an offset for the time-to-death:

log(µ) = β0 + β1T + log(time-to-death+1) (8)

In addition, I conducted a subgroup analysis in the population of those patients that are
naive to both treatments prior to their respective entry into the trial. As the treatment
history was very difficult to model in sufficient detail, this subgroup analysis in new users
helps to narrow down the extent of possible unobserved confounding. However, new users
form a distinct group of patients, so the comparability of the estimated effects depends on
how greatly the group of new users differs from the overall population with respect to age
and the presence of comorbidities.

5.4 Subgroup analysis
In addition, analyses for four more subgroups were conducted. Besides the subgroup of new
users, I also consider a particularly old population of patients over 80 years old and three
groups with specific comorbidities: patients with severe hypoglycemia, severe renal diseases
and heart failure respectively. I hypothesize that DPP4 should be superior to SU in the the
entire population of over 65 year old patients. However, no further evidence exists on both
the question whether the age limit of 65 is meaningful and whether there are other factors
that modify the effect. It is of interest to determine more specific subgroups that are at
higher risk for developing adverse events when taking SU and therefore would profit most
from switching to DPP4.
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5.5 Missing data
A valid ID was required for each for each initiation to connect administrative information
with claims and diagnosis. If an initiation of DPP4 or SU could not be matched with admin-
istrative information because there was no ID at provided or because the ID1 (temporary
ID) could not be connected to a valid ID these lines were excluded. For some claims the
information on the daily defined dose contained in the issued drug package was missing. In
these cases, I imputed the overall mean of the DDD for the respective substance.
For most covariates only positive values are recorded. In a strict sense, the presence of
only one comorbidity does not necessarily imply the absence of others. Missing diagnosis
can result from either a lack of collection when patients are not asked about all possible
conditions at each physician visit or from a lack of documentation by the physician [35].
However, any imputation would be very complex and practically impossible to implement
for the entirety or even a large number of diagnoses at once as the overall health status
always needs to be taken into account but depends on all other present conditions. Also,
the level of the patients healthcare utilisation has a large influence. For instance, people
who visit physicians frequently are more likely to have data also on minor conditions not
directly connected to the cause of the visit than patients with fewer contact. I assume that
no claims are missing and impute a 0 for any missing values in any column except for ID,
age and gender. No missing values were encountered for age and gender.
I excluded patients that had gaps in their insurance history prior to baseline. I conducted
a complete case analysis if cases with incomplete insurance during follow-up were en-
countered. As insurance is mandatory in Germany and people do not frequently switch
between insurance companies, especially not elderly people, these missing cases should not
be systematically correlated with the outcome.
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6 Results
In the upcoming section, I describe the characteristics of the enrolled population, assess the
covariate balance that could be achieved through propensity score weighting, and present
effect estimates for the primary and secondary outcomes, along with the sensitivity and
subgroup analyses.

6.1 Population characteristics
I identified a total of 7.1 Mio initiations of DPP4 or SU between 2009 and 2019 in the
Barmer population. Of these, 31,803 observations had to be excluded because they could
not be matched to an insured person from the master data of the database. The exclusion
criteria were subsequently applied to the resulting population as specified in the flowchart
in Figure 5. Only the first eligible initiation of any insured person was included. 171,318
initiations were included, of which 111,865 initiated the treatment (DPP4) and 59,453 the
control (SU).
As prevalent users are included and this aspect is very relevant to the analysis and in-
terpretation, Figure 3 and Figure 4 provide a breakdown of the included population into
groups with a specific treatment history. Detailed counts are displayed at the bottom of the
flowchart in Figure 5. In the treatment group, the largest subgroup (52%) is formed by new
users who are naive to both treatment alternatives. The second largest group consists of
continued users (also referred to as current users) who already received DPP4 immediately
before the index initiation (23%). 18% are re-initiators who also previously received DPP4
in the 2 year assessment period prior to their personal time zero but had a longer gap since
their last prescription. Only a minority of about 7% of patients in the DPP4 group have
switched from SU or both to only DPP4 since their previous prescription. The control group
on the other hand contains a larger proportion of continued users (44%) and re-initiators
(30%). Only 21% of the control group are new users and 5% are switchers.

53%

18%

7%

23%

new users
re-initiators
switchers
continued users

Figure 3: DPP4 group

21%30%

5%
44%

Figure 4: SU group
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Figure 5: Flowchart of inclusion of observations in the study

initiation of DDP4
or SU 2009 - 2019

(n=7 144 596)

Excluded (n=31 801):
a) id1 exists but can not be matched
(n=31 799)
b) no ID nor id1 (n=2)

initiations
with valid ID

(n=7 112 793)

Excluded due to non-fulfillment of
inclusion criteria (n=5 286 976):
a) date of pickoff at pharmacy not
between 1.1.2011-31.12.2018 (n=1
764457)
b) no overlap with metformin initia-
tion (n=1 661 526)
c) patient under 65 years old
(n=1206316)
d) insured with DBKK (n=85 771)
e) 2-year pre-baseline period not cov-
ered by insurance (n=215 759)
f) initiation of DPP4 and SU on the
same day (n=153 820)

Eligible initiations
(n=1 825 817)

Exclude all but first initiation for each
patient (n=1 654 499)

Eligible initiations
(n=171 317)

DPP4 initiation SU initiation

Allocated to intervention (n=111 865):
current user DPP4 (n= 26 172)
a) history of only DPP4 (n=22 970)
b) history of both (n=3202)

re-initiator after gap (n=20 440)
a) history of only SU (n=2299)
b) history of only DPP4 (n=16 040)
c) history of both (n=2101)

direkt switcher from SU to DPP4
(n=3612)
a) history of only SU (n=2159)
b) history of both (n=1453)

direkt switcher from both to SU (n=3720)
new user without history (n=57 921)

Allocated to control group (n=59 453)
current user SU (n=25 842)
a) history of only SU (n=24 469)
b) history of both (n=1373)

re-initiator after gap (n=17 989)
a) history of only SU (n=17 031)
b) history of only DPP4 (n=292)
c) history of both (n=666)

direkt switcher from DPP4 to SU (n=743)
a) history of only DPP4 (n=186)
b) history of both (n=557)

direkt switcher from both to SU (n=2224)
new user without history (n=12 655)
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Table 4: Baseline characteristics and absolute standardized difference (ASD) between
treatment and control group

Characteristic DPP4 SU ASD
(n = 111865) (n = 59453)

heart failure = 1 (%) 22942 (20.5) 10426 (17.5) 0.076
adipositas = 1 (%) 39818 (35.6) 17464 (29.4) 0.133
betablocker = 1 (%) 67873 (60.7) 34771 (58.5) 0.045
hypertension = 1 (%) 100517 (89.9) 52821 (88.8) 0.033
CAD = 1 (%) 18662 (16.7) 8120 (13.7) 0.084
leftventricular hypertrophy = 1 (%) 3254 ( 2.9) 1263 ( 2.1) 0.050
lipid disorder = 1 (%) 69032 (61.7) 34352 (57.8) 0.080
myocardial infarction = 1 (%) 4550 ( 4.1) 1769 ( 3.0) 0.059
pancreatitis = 1 (%) 2816 ( 2.5) 1291 ( 2.2) 0.023
severe hypoglycemia = 1 (%) 271 ( 0.2) 90 ( 0.2) 0.021
severe liver disease = 1 (%) 1654 ( 1.5) 778 ( 1.3) 0.014
severe renal insufficiency = 1 (%) 1064 ( 1.0) 196 ( 0.3) 0.078
age (median [IQR]) 72.00 [67.00, 77.00] 73.00 [69.00, 78.00] 0.229
sex = 1 (%) 56687 (50.7) 29974 (50.4) 0.005
cohort n (median [IQR]) 14.00 [6.00, 23.00] 4.00 [1.00, 11.00] 0.806
current DPP = 1 (%) 29892 (26.7) 2967 ( 5.0) 0.623
time DPP (median [IQR]) 0.00 [0.00, 482.00] 0.00 [0.00, 0.00] 0.783
current SU = 1 (%) 7332 ( 6.6) 28066 (47.2) 1.032
time SU (median [IQR]) 0.00 [0.00, 0.00] 600.00 [134.00, 682.00] 1.644
time metformin (median [IQR]) 659.00 [375.00, 700.00] 676.00 [537.00, 706.00] 0.143

Table 4 displays the baseline characteristics of the included population and the balance
of the identified confounders between the treatment and control group before applying
propensity score weighting. The last column shows the baseline absolute standardized
difference between the treatment and control group.
In the total population the average age was 72 years (IQR, 67-77) and 50.6% of the
participants were males. The most prevalent of the comorbidities observed in the total
population are hypertension (89.5%), lipid disorder (60.3%) and adipositas (33.4%). DPP4
initiators were slightly younger (median 72 vs 73) and were more frequently suffering from
all the observed comorbidities compared with those initiating SU. However, the standardized
difference in proportion for the comorbidities is generally small (<0.1), except for adipositas,
which is present in 35.6% the DPP4 initiators but only in 29.4% of the initiators in the SU
group. The majority of patients in both groups received beta-blockers in the two years prior
to cohort entry, 60.7% in the treatment group and 58.5% in the control group.
Differences between the groups are larger with respect to their median entry into the cohort,
their most current prior treatment and their treatment history. The median cohort entry is
much later for DPP4 initiators (14 [6,23]) than SU initiators (4 [1,11]). The majority of
SU initiators entered the cohort at the beginning of the study with less than 25% entering
after quarter 11 which corresponds to the second half of the year 2013. In the DPP4 group
the median entry is in quarter 14. Figure 3 and 4 already visualized the proportion of
new users, continued users, re-initiators and switchers in both groups. As there are few
switchers in both groups, there is little overlap in the sense that few patients have a similar
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treatment history prior to baseline. While the majority of patients in the SU group has
taken SU during almost the entire pre-baseline period of 720 days (median 600 [134,682]
days), the majority of DPP4 initiators has not taken any SU prior to baseline (median 0
[0,536] days). Most patients from both groups are naive to treatment with DPP4 (median 0
[0,482] and 0 [0,0]), but while 44% of DPP4-initiators have at least some prior history of
DPP4, this proportion is only 12% in the SU group.

6.2 Confounder adjustment via propensity score weighting
Figure 6(a) shows the unadjusted propensity score distribution in treatment (blue) and
control (red) group. The treatment group displays a narrow peak at approximately 0.8 and
a second peak very close to 1. The propensity scores of the control group on the other hand
are concentrated in one high peak close to zero with a lower second peak at around 0.8.
The overlap between the two groups is best in the right part of the distribution where the
value of the propensity score is about 0.7 or higher but not yet close to 1. Both extremes,
propensity score very close to 1 or 0 have very little to no overlap which is to be expected.

Figure 6: Propensity score distribution in treatment and control group. (a) Unadjusted
and adjusted using IPW (b) and overlap weighting (c)

A comparison of the weighted propensity score distributions achieved by IPW and overlap
weighting is displayed for our data in the middle (b) and right (c) plots in Figure 6. Both
IPW and overlap weighting perform well. As our sample is relatively large (171,318 patients)
the number of patients in the areas with little overlap still seems to be high enough to
achieve adequate balance also with IPW. However, the highest propensity score is larger
than 0.99 and the 75% quantile lies at 0.91 (6). As inverse-probability weights are calculated
by taking the inverse of the propensity score, these extreme propensity scores produce a
high amount of large weights with the highest weight in IPW taking a value as high as
1,441 (6). A detailed analysis of balance for each covariate clearly favors overlap weighting
as it achieves nearly perfect balance in means for all confounders (Figure 7). With IPW on
the other hand, the achieved balance is worse, in particular with respect to two variables
that represent the prior treatment with DPP4, currentDPP and timeDPP. Both variables
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also displayed very large baseline differences in proportion respectively median (4). IPW
seems to overcompensate the difference as weighting switches the sign of the difference in
mean from positive to negative.
The Kolmogorov-Smirnov statistics and variance ratios for the continuous variables (Figure 8)
show that there remains some imbalance also when using overlap weighting even so the
standardized mean difference is zero. Nevertheless, the overall resulting balance achieved
with overlap weights is clearly better than with IPW, so I will use these for analysing the
average treatment effect.

Figure 7: Covariate balance
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Figure 8: Kolmogorov-Smirnov Statistics and Variance Ratios for continous convariates

6.3 Average treatment effect in the overlap population
The distribution of the weighted primary outcome shown in Figure 9 is not normally
distributed. It is slightly skewed with an inflation below the mean. Therefore, I modeled
it as a count outcome using a negative-binomial model. Using a negative-binomial model
instead of a standard poisson model is appropriate as there is some overdispersion, which is
visible in the deviation from the line in the QQ-plot in Figure 10.

Figure 9: Weighted distribution of the primary outcome

Figure 11 shows the effect estimates for the average treatment effect in the overlap population
for the primary outcome. The estimated effects for the secondary outcomes are shown
in Figure 12. Both figures highlight the main analysis in blue and display the subgroup
analyses underneath.
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Figure 10: QQ-plot of the standardized pearson residuals for a GLM for the outcome
regressed on treatment

Figure 11: ATO of the primary outcome in total population and subgroups

In the total population, the mean rate of hospitalisations and outpatient visits within one
year was higher in the DPP4 group (15 [11,20]) than in the SU group (14 [10,20]) with a
rate ratio of 1.03 (95% CI 1.02-1.03) (Figure11). According to the e-value, the observed
effect could be nullified by an unmeasured confounder that was associated with both the
treatment and the outcome by a rate ratio of 1.03 each, taking into account the already
measured confounders. The confidence interval could be moved to include the null if an
unmeasured confounder had a rate ratio of at least 1.02 each. The rate ratio was identical in
sensitivity analyses with an offset for time-to-death included in the outcome model (Table
8 in the Appendix). In all subgroup analysis, the direction of the effect of the primary
outcome was similar. Except for the very small subgroup of patients with a prior diagnosis
of severe hypoglycemia the effect was also significant (12) with similar e-values as in the
main analysis (Table 8 in the Appendix).

The odds for the secondary outcomes 1-year all-cause mortality, 1-year severe hypoglycemia
and all-cause hospitalisation within 30 days were higher in the SU group than in the DPP4
group of the total population, but the differences were not significant (Figure 12).
However, the effects were more distinct in some subgroups. The odds for severe hypoglycemia
were significantly higher in the SU group than in the DPP4 group among the subpopulations
of new users and those patients with a severe renal insufficiency. The e-values of 5.51 and
54.78 suggest, that the harmful effects of SU in these subgroups are robust to unobserved
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Figure 12: ATO of the secondary outcomes in total population and subgroups
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confounding. For the outcome hospitalisations the direction of the effect differed between
the subgroup of new users, where SU is harmful and the other subgroups, where the odds
for at least one hospitalisation within 30 days are higher in the DPP4 group. Accept for the
very small subgroup of patients with prior hypoglycemia, all these effects were significant.
The effects on the outcome mortality were inconclusive between the subgroups and no
significant effects were observed.
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7 Discussion
The conducted study has several strengths. The „target trial emulation“ concept was
applied to detect and control important sources of bias by design. The overlap weighting
used for confounder adjustment lead to adequate balance of the observed confounders.
Also, the use of the e-value allows to assess the impact of unobserved confounding. Two
important sources of bias were addressed in sensitivity analyses. The subgroup analysis
in new users offered a possibility to narrow-down the influence of the partially incomplete
modeling and data representation of the treatment history. The inclusion of an offset for
the time-to-death showed that the intercurrent event death before end of follow-up had no
substantial influence on the estimated effect. One of the most important advantages of the
analysis is its high external validity. The results are only fully representative for patients
insured with Barmer. However, as Barmer is the second- largest public health insurer in
Germany and has more than eight million members, the included population is also be
considered as highly representative for the overall German population.
One the other hand, observational analysis and particularly the usage of claims data also
has important limitations. I discuss the most important of the encountered issues in the
following sections.

7.1 Definition of the target trial and estimand
One particularly complicated task with regard to the general study design was to decide
whether to include and how to handle prevalent users of the treatments of interest or patients
who switched between the two substances prior to the start of the trial. Existing literature
on target trial emulation encourages the use of new-user designs as this generally leads to
lower risk of bias [18] [27]. Prevalent users „survived“ the early period of treatment, which
can introduce selection bias if risk is not constant over time [27]. For instance, an extreme
case would be to include patients only after a surgery has taken place. As the surgery
itself and the immediate postoperative period have very high risk, the treatment effect will
be overestimated as patients who died during or shortly after surgery are excluded [27].
However, the study targets older patients who rarely start a new medication. It is of special
interest to research how long-term users could profit from a treatment switch. In order to
answer our research question it does not make sense to generally exclude these long-term
users as the study population would then be limited to patients who have a shorter diabetes
duration, less severe disease status and who are younger than the total population. The
diabetes medication I am looking at should have a relatively constant risk over time as the
effect of the medication is short-term and does not accumulate. However, the occurrence of
adverse events certainly depends on how well the treatment plan and dosing is adjusted
to the patient, which does in turn depend on the experiences that patient and physician
have made. Also, the occurrence of adverse events certainly causes patients to switch or
discontinue treatment which leads to a relative depletion of patients with a disposition or
high risk for adverse events in the group that receives the inferior drug.

I estimated the effect in first-time users separately as a sensitivity analysis to see how
important these problems are. However, new users form a distinct group of patients, so any
comparability of the estimated effects depends on how greatly the group of new users differs
from the overall population with respect to important effect modifiers like age and the
presence of comorbidities. Table 5 provides a comparison of characteristics of the weighted
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total population and the weighted population of new users. The most important difference
lies in the proportion of patients with a prior event of hypoglycemia, which is only half
as high in the population of new users compared to the total population. New users are
slightly older, more often male and entered the cohort later. Overall however, the observed
covariate distributions are very similar. An important unobserved effect modifier is most
certainly diabetes duration. Assuming though, that such unobserved characteristics do
not modify the treatment effect substantially, the difference in effect sizes between the
new-user group and the overall population might indicate the extent and direction of bias
that was introduced by unobserved confounding related to the treatment history. For the
primary outcome, the effect in new users is slightly closer to null and for the secondary
outcome, the harmful effect of SU is considerably more pronounced. In both cases, bias
seems to most likely conceal harmful effects of SU, as the results in the potentially less
biased analysis in the newuser-population are closer to the expected harmful effect of SU. A

Table 5: Characteristics of weighted total population and weighted population of new users

Characteristic total population new users
(n=36,915.9) (n=19,927.6)

heart_failure = 1 (%) 7215.6 (19.5) 4055.8 (20.4)
adipositas = 1 (%) 11746.0 (31.8) 6166.5 (30.9)
betablocker = 1 (%) 22199.5 (60.1) 12105.8 (60.7)
hypertension = 1 (%) 32977.4 (89.3) 17784.1 (89.2)
CAD = 1 (%) 5658.5 (15.3) 3158.7 (15.9)
leftventricular_hypertrophy = 1 (%) 967.4 ( 2.6) 547.8 ( 2.7)
lipid_disorder = 1 (%) 21969.7 (59.5) 11676.7 (58.6)
myocardial_infarction = 1 (%) 1325.9 ( 3.6) 744.6 ( 3.7)
pancreatitis = 1 (%) 928.4 ( 2.5) 515.9 ( 2.6)
severe_hypoglycemia = 1 (%) 69.6 ( 0.2) 27.9 ( 0.1)
severe_liver_disease = 1 (%) 547.7 ( 1.5) 301.2 ( 1.5)
severe_renal_insufficiency = 1 (%) 221.3 ( 0.6) 140.1 ( 0.7)
age (median [IQR]) 73.00 [68.00, 78.00] 74.00 [70.00, 78.00]
sex = 1 (%) 19074.7 (51.7) 10724.0 (53.8)
cohort_n (median [IQR]) 9.00 [3.00, 18.00] 12.00 [6.00, 20.00]
time_metformin (median [IQR]) 659.00 [276.00, 700.00] 655.00 [252.34, 699.00]

topic related to the estimand definition that I considered in more detail is how to handle the
intercurrent event death before end of follow-up. The effect of the treatment on mortality
and the exact mortality rate was not clear beforehand which made it difficult to choose the
best estimand and to assess the importance of this decision. Kahan et al. (2020)[20] discuss
the interpretation of possible estimands for outcomes truncated by death. According to the
authors, a strategy that should be avoided whenever treatment might affect mortality, is a
complete case analysis with the exclusion of patients who die during follow-up, as this can
introduce substantial bias depending on the magnitude of difference in mortality rates [20].
One recommended approach is a composite strategy which would assign the worst possible
outcome to individuals who die before the end of follow-up [20]. This ensures that death is
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not counted as a positive outcome. The disadvantage of this approach, in particular for
count outcomes like our primary outcome, is that the meaning of the estimated effect size
will no longer be clear, as a difference in the number of visits between the groups can be
solely due to a difference in mortality rates between the groups and the exact choice of the
values assigned to the dying patients has a large influence on interpretation. Therefore, I
chose the second proposed estimand, a while-on-treatment strategy. This handling is not
optimal either, as the treatment effect then has to be interpreted more from a healthcare
system perspective than from the patient’s perspective. A brief analysis of the weighted
distribution of the primary outcome suggests that the treatment does not have a substantial
effect on mortality. Figure 13 in the Appendix shows the distribution of time-to-death in
the two groups in the included population. About 3.4% of the included cases die between
time zero and end of follow-up. While small differences are visible, the overall distribution
is very similar in both groups. The sensitivity analysis with an offset for the varying lengths
of follow-up and the secondary analysis of the outcome mortality both confirm this finding.
Thus, the handling of this intercurrent event does not seem to have an important impact
on the estimated effect.
Another terminal intercurrent event that is present in the included population is the end
of a patients insurance before the end of follow-up. Similar to death such cases cannot be
observed after the intercurrent event occured, which for instance excludes the possibility to
handle these events under a treatment policy strategy. Contrary to death however, the end
of insurance should be completely independent from the intervention, so I consider these
values to be missing completely at random and conduct a complete case analysis. In total,
only 962 (0.4%) of the included cases have incomplete insurance coverage between time zero
and end of follow-up which indicates that again no substantial impact of the intercurrent
event is to be expected.

One aspect of the target trial that I was not able to emulate is the clustering of patients
over different physicians. In the target cluster-RCT, randomisation would be conducted
on the physician level as the intervention of a Priscus-informed medication review can
not be implemented on an individual level. Single physicians would be randomised to
either intervention or control group and would then prescribe their patients a medication
according to their best knowledge. Apart from patient-characteristics, the decision criteria
can also depend on characteristics of the physician. The used claims data do not contain any
physician-level variables apart from the geographical region and the medical specialty the
physician works in. Thus, I did not have enough information to directly include cluster-level
covariates as confounders. Other possibilities are to do a very strict emulation of a cluster
RCT by estimating the propensity scores within each cluster [10], or to include the cluster
membership as either a fixed or a random effect. In an extensive simulation study conducted
by Arpino et al. (2011), directly including all relevant cluster information performed best
in terms of bias and MSE, but a fixed or random effect for the cluster membership also
reduces the imbalance of the unobserved covariates considerably and lead to a better model
compared to a method that ignores all cluster information [10]. However, the power of all
three analyses strongly despends on both a sufficient cluster size and that the positivity
assumption holds within the clusters as there needs to be enough overlap between the
groups for all relevant covariates within each cluster. I originally planned modeling the
physician as a random factor in a generalized linear mixed model to estimate the propensity
scores. Unfortunately, both the cluster sizes and the overlap between the two groups within
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the clusters are insufficient to allow any modeling of the cluster design in our study. Even
so the population and the number of clusters is very large, many of the physician only treat
few patients. Many physicians have a preference to predominantely or even exclusively
prescribe either DPP4 or SU (see Appendix Table 14). Despite these apparent problems I
tried to estimate the linear mixed model but as expected, convergence could not be reached.
I consider this unsuccessful attempt to incorporate the cluster aspect into the study design
to be a significant weakness of the analysis.

7.2 Reducing bias caused by emulation
One of the inclusion criteria defined in the target trial is that patients need to take metformin
as first-line therapy at time zero. This is a good example to underline how helpful it is to
both follow the „target trial emulation“ framework and to define a clear estimand. In the
emulation with claims data, I have no information on the treatment plan and therefore
cannot distinguish between patients who are prescribed SU or DPP4 as an add-on treatment
to metformin and those who are switching away from metformin. Polypharmacy studies
often distinguish between polypharmacy and switching by using methods that check the
overlap of days supply [23]. If both medications are taken simultanously for more than
an arbitrary number of days the medications are classified as polypharmacy. Since in
our emulation study the time zero for each patient is set to the initiation of the add-on
treatment, counting the overlap days would necessarily require information about the period
that follows time zero. Under the „target trial emulation“ framework such a setting is
critical. Patients should never be included or excluded based on an event that occurs
after treatment assignment as this would be an impossible procedure in a real trial and
introduces survivorship bias. Patients who for example die or experience serious side effects
soon after the start of the trial will not be able to refill their metformin prescription and
would consequently be excluded from the study. The study sample would then be artificially
healthier than the total population of interest. Instead, in this case we need to accept that
there will be a lack of information and some risk that patients are wrongfully included. I
did not find a possibility to ensure that metformin and DPP4/SU are taken simultanously
and not successively without incorporating information from after time zero. To at least
take into account as much information as possible I checked whether the initiation of the
add-on treatment falls within the active days supply of the last metformin prescription.
This procedure follows the approach from a “refill pattern method” developed by Liu et
al. (2016) [23]. Instead of defining a fixed overlap, the “refill pattern method” considers
medications as simultanous if each prescription is refilled within the active days supply of
the other. Following Liu et al. (2016)[23], at least two prescriptions for each of the two
medications are required. In my case, I only have one prescription each that occurs before
or at time zero. I do not know whether the patient continued to take the remaining doses
of metformin and whether he/she received a refill soon enough before the coverage with the
last prescription was over, but I can at least exclude patients without any overlap between
the two medications. The lack of information changes the target population to which the
estimate applies from patients who receive metformin and an add-on treatment to patients
who still had an active metformin prescription at the time when they initiated DPP4 or SU.
As I chose to model the adverse event treatment switching or discontinuation under the
treatment policy strategy, I did not check for adherence to the treatment regimen.
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7.3 Confounder Selection
The process of confounder selection and definition, especially the expert input in the last step
turned out to be time-consuming. For future projects it could be reasonable to develop an
even more structured approach and involve more than just one pharmacological expert. Also,
the summaries of product characteristics of each of the compared treatment alternatives
might be a better starting point for choosing confounders than guidelines and RCTs, as
they allow to more reliably identify contraindications and interactions with simultaneous
medication. Building on these, less unambiguous criteria can then be supplemented from
relevant RCTs and guidelines. The process should ideally also include a defined procedure
for selecting the appropriate ICD-10 codes for each condition that is to be included as a
confounder. Both, the agreement of codes with the medically appropriate diagnosis and the
extent to which coding adheres to guidelines, varies greatly and is not seldom influenced
by financial considerations. The selection of the practically most relevant codes and an
assessment of the extent of under- or overrepresentation of a diagnosis in the data therefore
requires substantial expert knowledge. Ideally, comprehensive validation of codes should be
considered for important covariates and the outcomes, which was out of the scope of this
project.

Particularily relevant in this respect is the incomplete representation of hypoglycemia in the
claims data. As the occurence of hypoglycemia in the patient history is a confounder for
treatment choice, any systematic missclassification of such events will also have an impact on
the estimated effects of the primary outcome. A comprehensive analysis of hospital stays due
to adverse drug reactions based on ICU admission records, internal reports and discharge
letters conducted by Schmiedl et al. (2017)[30] has revealed that coding of hypoglycemic
events in German hospitals is very unreliable. Only about half of the occuring hypoglycemia
were coded as such during discharge. Accompanying illnesses like renal insufficiency or heart
insufficiency are often coded as main diagnosis instead of the hypoglycemia. There are no
indications, that this misleading coding process is dependant of the exact drug that was
taken by the patient so there should be no systematic differences between the two groups.
Nevertheless, the magnitude of the missing data asks for a cautious interpretation of the
estimated effects.

The role of the factor treatment history was the topic of particularly thorough discussions.
As the study includes prevalent users of both DPP4 and SU as well as patients that have
switched between the two in the past, both patients and physicians are certainly influenced
by prior experiences when making the decision of continuing the current treatment or
switching to an alternative. The question whether the factor should be controlled as a
confounder depends on whether it also influences the outcome independently from the
treatment. If many patients did not tolerate one medication in the past they might be
over-represented in the other group while the first group appears artificially healthier, as
patients with severe side effects already switched to the alternative. Also, while I expect
both benefits and harms to occur mostly while or shortly after administering the respective
treatment, effects can still spill-over to the study period, especially if the patient recently
switched between treatments. Events like severe hypoglycemia immediately lead to contacts
with the healthcare system in the form of physician visits or even hospitalisations. Indirectly,
this influences the primary outcome as I can not assume that the future number of contacts
is independent of the intensity of prior visits. An aspect that might have biased our analysis
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is the incomplete representation of the exact treatment history. I controlled for the most
recent prescription and the time under each of the two treatments by including the total
amount of prescribed DDD in the past two years. However, the time of a switch between
treatments is not captured. Spill-over effects might occur in patients who switched very
shortly before their inclusion in the study. Also, a new treatment is sometimes introduced
gradually, so in the beginning of a new treatment, dosing is adjusted frequently and some
patients receive prescriptions for both options simultaneously so that it is not possible to
deduct from the prescription data, which medication was in fact taken. I excluded patients
who received both medications on the same day, but as one prescription usually supplies the
patient for several months, it is impossible to determine an exact switching time. In the light
of problems like these it makes sense that the inclusion of prevalent users in observational
analysis is often discouraged.

Another question related to this is whether it is appropriate to adjust for variables that
are influenced by prior treatment. The prior occurrence of severe hypoglycemia is such a
critical variable. An inclusion of these variables would be problematic if they are colliders
and induce a spurious association between exposure and outcome. Colliders are defined as
variables that are independently caused by both the exposure and the outcome [19]. I argue
that in principle, including the variable severe hypoglycemia as a confounder should not
block the causal pathway as the events that are considered for determining the occurrence
of hypoglycemia occur prior to baseline while the outcome value is assessed strictly after
time zero. Not controlling for an important confounder might also introduce bias. I
therefore decided to include severe hypoglycemia as a confounder in all analyses except for
the outcome risk for severe hypoglycemia within one year which is most likely to be more
severely impacted by the decision than the other outcomes. However, the topic warrants
further discussions, which were outside the scope of this project.

I assume that there might be some even stronger unobserved confounding that is related
to the health care conditions a patient is treated in. The medical covariates that we
included as confounders were balanced unexpectedly well between the two groups already at
baseline. As we carefully selected the medical factors that might be considered by physicians
based on existing evidence, it is unlikely that we missed very influential comorbidities or
comedications. One exception might be treatment with insulin. We did not consider the
factor as a potential confounder, as it has no explicit and defined influence on treatment
allocation. However, insulin can cause severe hypoglycemia and thus might have a very
strong influence on all considered outcomes. Further analyses should determine whether the
factor is really not associated with the treatment assignment, else it should be included as
a confounder. The treating physician definitely also has a strong influence on the choice of
treatment. Many physicians have a preference to exclusively prescribe either DPP4 or SU
that seems to be independent of any patient characteristics. Thus, it would be appropriate
to control for confounding factors at the physician level but that was not possible within
this analysis as was justified above in chapter 7.2. Another possible unobserved confounding
factor that Dr. Thürmann came up with when we discussed the results, is the participation
of a patient in a disease management program (DMP). Existing evidence suggests that the
DMP for diabetes type 2 has improved the quality of pharmacotheraphy in the participating
patients [22][26][31]. Several observational analyses on claims data also suggest that DMP-
participation influences the overall use of the health care system. The closer and more
thorough monitoring of patients within the program increases the overall number of claims,

43



prescriptions and contacts with resident physicians [22][31], the frequency and duration
of hospitalisations, and reduces diabetes complications as well as overall mortality [14].
This suggests that medication plans of patients who take part in a DMP follow existing
evidence more closely; and adverse events and interaction effects with other drugs are better
monitored by physicians for these patients. Thus, these patients might less often receive SU
than other patients. In any future analysis similar to this one the factor should certainly be
taken into account.

7.4 Data source and implementation
A problem that complicates the interpretation of the primary outcome relates to current
coding practice. German claims data do not allow to deduce the total number of physicians
visits from the recorded cases. According to the reimbursement regulations of the social
health insurance scheme, physician can only invoice one visit for each patient within one
quarter. Additional visits are thus not financially relevant. As elderly patients generally
have a high contact rate, many patients will visit each of their physicians more than once
every quarter. Thus, the recorded number of visits might be much lower than the true total
number of visits. As we use an active comparator design and no differences in recording
practice are to be expected between the two treatments, no bias is expected. Nevertheless,
it is highly questionable whether the number of all-cause doctors visits within one year
really is suitable to give an impression of the overall amount of adverse events or the overall
health status of the patient.
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8 Conclusion
The target trial emulation approach proved to be very helpful for developing a study design
that effectively addresses the question of interest. I profited most from the structured
approach when deciding how to handle prevalent users, how to account for the cluster
structure and when determining which initiations of DPP4/SU should be included (the
first for each patient). However, several of the most decisive decisions that I had to make
during the „emulation step“ were not explicitely addressed by the elements included in
the „target trial table“ that was suggested by Hernán and Robins (2016). Therefore, the
additional elements from the estimand framework that I also defined prior to the practical
implementation were a useful addition. First and foremost, the consideration of different
possible population-level summary measures allowed me to straightforwardly compare the
implications of choosing different methods for confounding adjustment. Besides that, the
handling of intercurrent events and an exact definition of the outcomes can be very complex,
and without such a structure, reducing bias and providing transparent reporting would have
been even more difficult.

Overlap weighting achieved a very good balance of all observed confounders. It outperformed
inverse probability weighting with respect to balancing those variables of treatment history
that had limited overlap between the DPP4 and SU group. However, a high risk for bias
due to unobserved confounding remains. In particular, strong unobserved confounding
related to the personal preferences of the treating physician and the health care conditions
a patient is treated in is possible.

The effect estimated for the primary outcome contradicts my initial hypothesis of a harmful
effect of SU on all considered outcomes and in all subgroups. Among the elderly patients
included in this cohort study, the rate of hospitalisations and physicians visits within one
year was significantly higher in patients who received DPP4 than in those who were treated
with SU. However, this primary outcome, as I defined it, might not be an adequate surrogate
for overall adverse events or the general state of health of patients, as increased contact
with the healthcare system can also be caused by preventative measures like DMPs. In
addition, the effect on the primary outcome seems to be very susceptible to unmeasured
confounding, as the e-value is very low in the total population and even lower in the
subgroup analyses. The already low effect size might be additionally inflated by remaining
confounding related to the treatment history. In light of of the numerous possible sources of
unmeasured confounding that I identified, the estimated effect in favour of SU is not reliable.
This very result is in line with the existing evidence from RCTs concerning the difference
between DPP4 and SU in overall risk for adverse events, which is also inconclusive. With
hindsight, it might have been better to focus on a primary outcome with a higher level
of existing evidence, as this thesis was constructed as a proof-of-concept study. Clearer
evidence on the harmful effect of SU exists for mortality and the very specific outcome risk
for hypoglycemia. None of the effects for any of the secondary outcomes was significant
in the overall population, but a clearly harmful effect of SU could be shown for the risk
of severe hypoglycemia in some subgroups. The direction and approximate effect sizes of
the two secondary outcomes correspond to the findings from RCTs. The effect is most
pronounced and clearly significant among new users and patients with a pre-existing renal
insufficiency. The e-values for these two subgroup-effects also suggest that they are relatively
robust to unmeasured confounding.
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Appendices

Figure 13: Distribution of time to death in treatment compared to control group
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Variable

in mind. 

einer RCT als 

Baseline-

Kovariable 

berück-

sichtigt

Entscheidun

gsfaktor in 

aktueller 

S3 Leitlinie 

Variable 

sollte

aufgenom

men 

werden

ggf. 

Entscheid

ungs-

kriterium Kommentar in Routinedaten zuverlässig darstellbar

Age ja ja ja 65 years gemäß unseres systemat Reviews ja

Sex ja ja nein es gibt keine Hinweise in der Literatur. Man 

könnte höchstens sagen, dass sex immer 

berücksichtigt werden sollte - dann ja.

ja

Ethnicity ja ja es gibt schon Unterschiede bei Diabetes 

allgemein

nein

Medical history:

Smoking Status (Never smoker, Ex-

smoker, current smoker)

ja ja nein sollte keinen Unterschied auf die 

Therapieauswahl haben

geringe Sensitivität, Dokumentation könnte 

von bestimmten Erkrankungen/Therapien 

abhängen

Diabetes duration, years ja ja ja in dokumentierter Vorbeobachtungszeit ja

schwere Hypoglykämien ja ja in dokumentierter Vorbeobachtungszeit ja

Microvascular complications ja nein kein Entscheidungsfaktor in dokumentierter Vorbeobachtungszeit ja

Heart failure (narrow SMQ ‘cardiac 

failure’)

ja ja ganz wichtiger Faktor! in dokumentierter Vorbeobachtungszeit ja

Previous myocardial infarction ja ja in dokumentierter Vorbeobachtungszeit ja

Cardiovascular accident ja in dokumentierter Vorbeobachtungszeit ja 

????

History of lipid disorder ja ja ja in dokumentierter Vorbeobachtungszeit ja

comorbidities:

subklinische kardiovaskuläre 

Erkrankung

ja nein ist nicht in Studien als relevanter Faktor belegt ob "subklinisch" ist in Routinedaten i.d.R. 

schwer abgrenzbar und setzt bei ICD-10-Kodes 

entsprechende Differenzierungen voraus

manifeste kardiovaskuläre 

Erkrankung

ja ja ja previous MI, heart failure

Atherosclerotic CV disease ja in dokumentierter Vorbeobachtungszeit ja

Coronary artery disease ja ja CAD als Diagnose liegt wahrscheinlich bei Z.n. 

Infarkt vor, den würde ich auf alle Fälle nehmen 

und wenn Z.n. Stent/Bypass Op.

in dokumentierter Vorbeobachtungszeit ja

Cerebrovascular disease ja nein kein Entscheidungskriterium in dokumentierter Vorbeobachtungszeit ja

Peripheral artery occlusive disease ja nein kein Entscheidungskriterium in dokumentierter Vorbeobachtungszeit ja

vascular disease ja nein zu unscharf

Microvascular disease ja nein in dokumentierter Vorbeobachtungszeit ja

Diabetic neuropathy ja nein in dokumentierter Vorbeobachtungszeit ja

Diabetic nephropathy ja nein in dokumentierter Vorbeobachtungszeit ja

Diabetic retinopathy ja nein in dokumentierter Vorbeobachtungszeit ja

Hypertension ja ja ja in dokumentierter Vorbeobachtungszeit ja

linksventrikuläre Hypertrophie ja ja in dokumentierter Vorbeobachtungszeit ja

Systolic blood pressure ja nein es wurde bisher kein üebrzeugender Vorteil für 

Diabetike mit/ohne  kardiovaskuläre 

Erkrankungen gezeigt. Daher würden mir auch 

keine Grenzwerte einfallen.

nein (nur in DMP-Daten)

Diastolic blood pressure ja nein nein (nur in DMP-Daten)

Stable angina ja nein nur wenn previous History of myocardial 

infarction

in dokumentierter Vorbeobachtungszeit ja(?)

Niereninsuffizienz ja ja bei schwerer NI ist die Ausschreidung von 

Glibenclamid (und den meisten SH) reduziert 

und daher Kontarindikation; bei z.B. Sitagliptin 

konkrete Dosisanpassungen möglich

in dokumentierter Vorbeobachtungszeit ja

Mild renal impairment ja nein in dokumentierter Vorbeobachtungszeit ja

starke Stoffwechselinstabilität ja nein ???

Musculoskeletal and connective 

tissue disorders

ja nein in dokumentierter Vorbeobachtungszeit ja

Gastrointestinal disorders ja nein in dokumentierter Vorbeobachtungszeit ja

Reproductive system and breast 

disorders

ja nein in dokumentierter Vorbeobachtungszeit ja

Neoplasms ja nein in dokumentierter Vorbeobachtungszeit ja

eGFR (estimated glomerular 

filtration rate)

ja ja < 30 

ml/min

nein (nur in DMP-Daten)

UACR (urinary albumin-to-

creatinine ratio)

ja nein

Albuminurie ja nein zu ungenau in dokumentierter Vorbeobachtungszeit ja

subklinische Arteriosklerose ja nein

Adipositas ja ja fragliche Sensitivität, Dokumentation dürfte 

von bestimmten Erkrankungen/Therapien 

abhängen

schwere Leberinsuffizienz ja SH werden eher über die Leber abgebaut und 

sollten dann nicht gegebn werden, bei Gliptinen 

spielt das nicht so eine Rolle

in dokumentierter Vorbeobachtungszeit ja

Table 6: All variables considered as confounders. The blue section was completed by Dr.
Thürmann, the grey section by Dr. Grobe. Green lines correspond to the
variables that were included.
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Pankreatitis ja Pankreatitis ist eine schwere, aber seltene 

Nebenwirkung der DPP4-ijhibitoren und danach 

sollte es nicht mehr gegeben werden. 

in dokumentierter Vorbeobachtungszeit ja

(Labor-)werte gibt es nur bei DMP, nicht im W-DWH

Body weight ja nein diese Werte sind kein Entscheidungskriterium 

für oder gegen einen der beiden 

Wirkstoffklassen

nein

BMI ja nein nein (ggf. Adipositas-Grade, s.o.)

HbA1c (glycated haemoglobin) ja nein nein

FPG (Fasting plasma glucose) ja nein nein

2-h PPG (postprandial glucose) ja nein nein

Triglycerides ja nein nein

Co-Medikation ja

Glucose-lowering therapy ja nein in dokumentierter Vorbeobachtungszeit ja

Alpha-glucosidase inhibitor ja nein in dokumentierter Vorbeobachtungszeit ja

Glinide (meglitinide) ja nein in dokumentierter Vorbeobachtungszeit ja

Metformin total daily dose/mean 

dose

ja nein in dokumentierter Vorbeobachtungszeit ja

Number of background glucose-

lowering therapies (0,1,2 or 3)

ja nein in dokumentierter Vorbeobachtungszeit ja

Antihypertensives ja in dokumentierter Vorbeobachtungszeit ja

ACE inhibitors ja nein in dokumentierter Vorbeobachtungszeit ja

β-Blockers ja ja Betablocker verschleiern die Symptome der 

Hypoglykämie v.a. bei SH, bei Gliptinen 

Hypoglykämien seltener, daher ist die 

Kombination weniger gefährlich

in dokumentierter Vorbeobachtungszeit ja

Diuretics ja nein in dokumentierter Vorbeobachtungszeit ja

Angiotensin receptor blockers ja nein in dokumentierter Vorbeobachtungszeit ja

Calcium antagonists ja nein in dokumentierter Vorbeobachtungszeit ja

Acetylsalicylic acid (aspirin) ja nein in dokumentierter Vorbeobachtungszeit ja - 

ohne OTC

Statins ja nein in dokumentierter Vorbeobachtungszeit ja

Lebensstil/Ernährung/Bewegungs

mangel

ja nein

familiäre/genetische Disposition ja nein

weitere von uns als wichtig 

erachtete Variablen:

bisherige Einnahmedauer der 

aktuellen Add-on-

Diabetesmedikation (DPP4 bzw. SU)

ja in dokumentierter Vorbeobachtungszeit ja

bisherige Einnahmedauer von 

Metformin

ja z.B. 

1,2,…,>24 

Monate

6 Monate, 12 Monate und länger in dokumentierter Vorbeobachtungszeit ja

Anzahl der Arztbesuche und 

Krankenhausaufenthalte im letzten 

Jahr

pro Jahr macht Sinn, da meist Hxpoglykämien 

vorkommen. Auch Hospitalisierungen wegen 

kardiovaskulärer Ereignisse und 

Thrombosen/Embolien sind häufig. Interessant 

sind auch die Anzahl der Hospitalisierungen mit 

Diagnose Herzinsuffizienz.

in dokumentierter Vorbeobachtungszeit ja

Zeitpunkt des Einschlusses in die 

Studie (Quartal)

vermutlich SEHR WESENTLICH - ja (Daten vor 

Einführung der pauschalierten Versorgung 

nicht vergleichbar),Rückgang 

Sulfonylharnstoff, Anstieg DPP4



Table 7: Characteristics after overlap weighting and absolute standardized mean difference
(ASD) between treatment and control group

Characteristic DPP4 SU ASD
(n = 18461.5) (n = 18454.4)

heart failure = 1 (%) 3608.1 (19.5) 3607.5 (19.5) <0.001
adipositas = 1 (%) 5873.7 (31.8) 5872.2 (31.8) <0.001
betablocker = 1 (%) 11102.5 (60.1) 11097.0 (60.1) <0.001
hypertension = 1 (%) 16548.6 (89.6) 16428.8 (89.0) 0.020
CAD = 1 (%) 2831.1 (15.3) 2827.4 (15.3) <0.001
leftventricular hypertrophy = 1 (%) 483.4 ( 2.6) 484.0 ( 2.6) <0.001
lipid disorder = 1 (%) 10989.3 (59.5) 10980.4 (59.5) 0.001
myocardial infarction = 1 (%) 663.0 ( 3.6) 662.9 ( 3.6) <0.001
pancreatitis = 1 (%) 463.4 ( 2.5) 465.0 ( 2.5) 0.001
severe hypoglycemia = 1 (%) 34.7 ( 0.2) 34.9 ( 0.2) <0.001
severe liver disease = 1 (%) 274.4 ( 1.5) 273.3 ( 1.5) <0.001
severe renal insufficiency = 1 (%) 110.5 ( 0.6) 110.9 ( 0.6) <0.001
age (median [IQR]) 73.00 [69.00, 78.00] 73.00 [68.00, 78.00] <0.001
sex = 1 (%) 9542.8 (51.7) 9531.9 (51.7) 0.001
cohort n (median [IQR]) 10.00 [3.00, 18.00] 9.00 [3.00, 18.00] <0.001
current DPP = 1 (%) 2033.5 (11.0) 2029.6 (11.0) 0.001
time DPP (median [IQR]) 0.00 [0.00, 35.00] 0.00 [0.00, 0.00] <0.001
current SU = 1 (%) 3862.1 (20.9) 3856.4 (20.9) 0.001
time SU (median [IQR]) 0.00 [0.00, 532.00] 0.00 [0.00, 457.00] <0.001
time metformin (median [IQR]) 660.00 [288.00, 701.00] 657.00 [265.00, 700.00] <0.001
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total 

sample 

size

complete 

cases
family link

Effect 

measure
estimate std error p value

exp(estim

ate)

95% CI of 

ratio

effective 

sample size

DPP4

median[IQR]/proportio

n(%)

SU

median[IQR]/proportion(

%)

estimat

e

std 

error
p value exp(estimate)

95% CI of 

ratio

E - 

value

e value for limit of 

confidence 

interval closest to 

ratio=1

main analysis 171318 170626  36915.9  18461.5  18454.4

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.06 0.0024 <0.0001 1.06 [1.05,1.06]    15.00 [11.00, 20.00]    14.00 [10.00, 20.00] 0.03 0.0036 <0.0001 1.03 1.03 1.02

1 year all-cause mortality risk  binomial logit OR 0.02 0.028 0.4546 1.02 [0.97,1.08]    680.2 ( 3.7)    717.3 ( 3.9) -0.06 0.0389 0.1532 0.95 [0.88,1.02] 1.06 1.00
1 year risk of severe hypoglycemia (at least one diagnosis) 

while alive 
binomial logit OR -0.73 0.1126 <0.0001 0.48 [0.39,0.6]     35.4 ( 0.2)     46.9 ( 0.3) -0.28 0.1677 0.0925 0.75 [0.54,1.05] 1.53 1.00

30 day risk of all-cause hospitalisation while alive binomial logit OR 0.18 0.0235 <0.0001 1.19 [1.14,1.25]   1028.9 ( 5.6)   1074.4 ( 5.8) -0.05 0.0321 0.1489 0.95 [0.9,1.02] 1.06 1.00

Sensitivity

with offset for time to death

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.03 0.0036 <0.0001 1.03 [1.02,1.03] 1.03 1.02

new users 70576 70283  19927.6  9964.2  9963.4

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.04 0.0047 <0.0001 1.04 [1.03,1.05]   15.00 [10.00, 20.00]   14.00 [10.00, 20.00] 0.02 0.0049 0.0001 1.02 [1.01,1.03] 1.02 1.01

1 year all-cause mortality risk  binomial logit OR -0.03 0.0474 0.4624 0.97 [0.88,1.06]   420.5 ( 4.2)   448.3 ( 4.5) 0.07 0.0483 0.1651 0.94 [0.85,1.03] 1.07 1.00

1 year risk of severe hypoglycemia (at least one diagnosis) 

while alive 
binomial logit OR -0.76 0.2049 0.0002 0.47 [0.31,0.7]    13.2 ( 0.1)    27.6 ( 0.3) -0.68 0.2106 0.0012 0.51 [0.33,0.76] 5.51 1.49

30 day risk of all-cause hospitalisation while alive binomial logit OR -0.04 0.0387 0.2576 0.96 [0.89,1.03]   622.3 ( 6.2)   693.2 ( 7.0) -0.12 0.0395 0.0034 0.89 [0.82,0.96] 1.14 1.04

Subgroups

age>80 25160 25126  5866.8  2932.4  2934.4

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.07 0.0064 0.0001 1.07 [1.06,1.08]   14.00 [10.00, 19.00]   14.00 [10.00, 19.00] 0.02 0.0094 0.0678 1.02 [1,1.04] 1.02 1.00

1 year all-cause mortality risk  binomial logit OR 0.26 0.0435 <0.0001 1.30 [1.2,1.42]   318.2 (10.9)   294.6 (10.0) 0.09 0.0609 0.1532 1.09 [0.97,1.23] 1.10 1.00

1 year risk of severe hypoglycemia (at least one diagnosis) 

while alive 
binomial logit OR -0.7 0.2017 0.0005 0.49 [0.33,0.73]    10.9 ( 0.4)    14.4 ( 0.5) -0.23 0.2975 0.4337 0.79 [0.44,1.42] 1.38 1.00

30 day risk of all-cause hospitalisation while alive binomial logit OR 0.46 0.0504 <0.0001 1.58 [1.43,1.74]   257.4 ( 8.8)   223.3 ( 7.6) 0.16 0.0687 0.0239 1.17 [1.02,1.34] 1.21 1.00

heart failure 33368 33273  7282.1  3641.4  3640.6

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.07 0.0058 0.0001 1.07 [1.06,1.09]   16.00 [11.00, 22.00]   16.00 [11.00, 21.00] 0.03 0.0082 <0.0001 1.03 [1.01,1.05] 1.03 1.01

1 year all-cause mortality risk  binomial logit OR 0.11 0.0459 0.0135 1.12 [1.02,1.23]   300.0 ( 8.2)   295.4 ( 8.1) 0.02 0.0613 0.7856 1.02 [0.9,1.15] 1.02 1.00

1 year risk of severe hypoglycemia (at least one diagnosis) 

while alive 
binomial logit OR -0.82 0.1758 <0.0001 0.44 [0.31,0.62]    16.1 ( 0.4)    24.4 ( 0.7) -0.38 0.2465 0.1261 0.69 [0.42,1.11] 1.87 1.00

30 day risk of all-cause hospitalisation while alive binomial logit OR 0.36 0.0435 <0.0001 1.44 [1.32,1.57]   359.2 ( 9.9)   318.7 ( 8.8) 0.13 0.0579 0.0231 1.14 [1.02,1.28] 1.17 1.02

severe hypoglycemia 361 359   63.0   31.4   31.6

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.08 0.0734 0.2731 1.08 [0.94,1.25]  16.00 [9.00, 23.00]  15.00 [8.00, 20.00] 0.16 0.128 0.2246 1.17 [0.91,1.5] 1.21 1.00

1 year all-cause mortality risk  binomial logit OR 0.39 0.3603 0.2753 1.48 [0.73,3]    6.4 ( 20.4)    7.1 ( 22.6) -0.13 0.4709 0.7788 0.88 [0.35,2.2] 1.16 1.00

1 year risk of severe hypoglycemia (at least one diagnosis) 

while alive 
binomial logit OR 0.3 0.6573 0.6447 1.35 [0.37,4.91]    1.0 (  3.2)    0.5 (  1.6) 0.73 0.8118 0.3698 2.07

[0.42,10.18

]
6.98 1.00

30 day risk of all-cause hospitalisation while alive binomial logit OR 0.53 0.3719 0.1565 1.69 [0.82,3.51]    6.5 ( 20.6)    3.7 ( 11.6) 0.68 0.5025 0.176 1.98 [0.74,5.29] 5.75 1.00

renal 17718 17633  3515.0  1759.2  1755.8

number of outpatient visits+hospitalisations within 1 year
negative 

binomial
logit rate ratio 0.05 0.0079 <0.0001 1.05 [1.04,1.07]   17.00 [12.00, 23.00]   17.00 [12.00, 22.00] 0.03 0.0112 0.0087 1.03 [1.01,1.05] 1.03 1.01

1 year all-cause mortality risk  binomial logit OR 0.14 0.0755 0.0666 1.15 [0.99,1.33]   110.4 ( 6.3)   109.0 ( 6.2) 0.01 0.1006 0.9146 1.01 [0.83,1.23] 1.01 1.00

1 year risk of severe hypoglycemia (at least one diagnosis) 

while alive 
binomial logit OR -0.69 0.2657 0.0093 0.50 [0.3,0.84]     3.9 ( 0.2)    13.7 ( 0.8) -1.17 0.3477 0.0008 0.31 [0.16,0.61] 54.78 2.74

30 day risk of all-cause hospitalisation while alive binomial logit OR 0.45 0.0684 <0.0001 1.57 [1.37,1.8]   155.3 ( 8.8)   119.5 ( 6.8) 0.28 0.0924 0.0023 1.33 [1.11,1.59] 1.52 1.12

Outcome Model (without any unadjusted adjusted for confounding via overlap weighting Table
8:

U
nadjusted

and
propensity

score
weighted

effect
estim

ates
and

e-values
for

all
outcom

es
and

subgroup
analysis
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Figure 14: Number of patients per physician (n_s) vs. probability to get prescribed SU
(prop_SU_s)
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Study protocol

Version: 1.1

Date: 07.06.2023

1. Study title

Harm reduction of switching from metformin plus sulfonylureas to metformin plus DPP4s in

older adults: A target trial emulation using German routine claims data

2. Abstract

This study will evaluate the real-world benefit of switching elderly patients from potentially

inappropriate medications (PIMs) to alternative medications using an example from diabetic

treatment. More concretely, we apply the concept of target trial emulation to analyse the

hypothetical intervention of prescribing only DPP4 inhibitors in addition to metformin in

patients who are currently prescribed sulfonylurea as add-on diabectic medication. The

hypothesis is that the intervention could reduce adverse events. In addition, we aim to

identify heterogenous treatment effects regarding these PIMs. Thus, we aim to identify

subgroups within the population of elderly patients that have an especially high risk for

adverse events when taking the selected sulfonylurea. The study will use routine claims data

from a German health insurance provider.

3. Responsibilities

Principal researcher:

Name Institution Contact

Paula Starke Institut für Medizinische Statistik,

Universitätsmedizin Göttingen, Göttingen;

aQua Institut GmbH, Göttingen

paula.starke@stud.uni-

goettingen.de

Participating researchers:

Name Institution Contact

Prof. Tim

Mathes

Institut für medizinische Statistik, Universitätsmedizin

Göttingen, Göttingen (principal investigator)

tim.mathes@med.uni-

goettingen.de

Prof. Dr. Petra

Thürmann

Lehrstuhl für Klinische Pharmakologie, Fakultät für

Gesundheit, Universität Witten/Herdecke;

petra.thuermann@helios-

gesundheit.de

Table 9: Protocol submitted for approval of ethics commission
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Helios UniversitätsklinikumWuppertal, Witten

Dr. Thomas

Grobe

aQua Institut GmbH, Göttingen thomas.grobe@aqua-institut.de

4. Scientific background

The PRISCUS list 2.0 (updated in 2022) identifies medications that may be potentially

inappropriate for use in patients over the age of 65 and should therefore be avoided. There

is evidence that suggests that elderly patients that take a PIM instead of alternative

substances have a higher risk for hospitalisations connected to adverse events1. Efforts to

reduce inappropriate prescription behaviour could be bolstered up by more specific

knowledge about the real-world effect of prescribing specific substances to specific groups

of patients but further research is warranted to identify those PIMs that are especially

responsible for the effect.

5. Project goals

We will prove the superiority of DPP4 inhibiors compared to Sulfonylurea as add-on

treatment in older adults receiving metformin with regard to harms such as hospitalisations,

the occurrence of severe hypoglycemia and mortality.

Apart from the question whether the entire population would profit from a treatment switch

(average treatment effect), we also aim to determine subgroups that might be at higher risk

for developing adverse events when taking PIMs.

6. Endpoints

Primary:

• 1 year number of all-cause hospitalisations and all-cause doctors visits (as composite

outcome) while alive

Secondary:

• 30 day risk of all-cause hospitalisation while alive

• 1 year risk of severe hypoglycemia (at least one diagnosis) while alive

• 1 year all-cause mortality risk

1 Endres HG, Kaufmann-Kolle P, Steeb V, Bauer E, Böttner C, Thürmann P (2016) Association between Potentially Inappropriate Medication
(PIM) Use and Risk of Hospitalization in Older Adults: An Observational Study Based on Routine Data Comparing PIM Use with Use of PIM
Alternatives. PLoS ONE 11(2): e0146811. doi:10.1371/journal.pone.0146811



7. Study population

Inclusion criteria: adults insured with BARMER health insurance

• that are older than 65 years

• are currently prescribed metformin

Time period: 2010-2018

Expected number of patients: 250 000 - 500 000

8. Methodology and Implementation

A retrospective cohort-type study will be conducted using routine claims data. The data

analysis will follow the approach of "target trial emulation"2 which offers a structured

approach to use observational data to estimate the causal effect of an exposure on an

outcome as if it were observed in a hypothetical randomized trial. A hypothetical RCT will first

be designed and then emulated with the routine data as closely as possible.

9. Biometry

Given this is a retrospective, real-world analysis of all patients insured with BARMER who

meet the inclusion criteria, a sample size calculation is not warranted3.

A statistical analysis plan will specify the methods of causal inference that will be used. We

will use generalized linear models for analysing the differences in harms between groups.

For confounding adjustment,4￼5￼. The heterogenous average treatment effects will be

estimated using Baysian6￼￼ , a nonparametric ensemble learning method that additively

2 Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available.
Am J Epidemiol. 2016 Apr 15;183(8):758-64. doi: 10.1093/aje/kwv254. Epub 2016 Mar 18. PMID: 26994063;
PMCID: PMC4832051.
3 Hernán MA. Causal analyses of existing databases: no power calculations required. J Clin Epidemiol. 2022
Apr;144:203-205. doi: 10.1016/j.jclinepi.2021.08.028. Epub 2021 Aug 27. PMID: 34461211; PMCID:
PMC8882204.
4 Chatton, A., Le Borgne, F., Leyrat, C. et al. G-computation, propensity score-based methods, and targeted
maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation
study. Sci Rep 10, 9219 (2020). https://doi.org/10.1038/s41598-020-65917-x
5 Zhou Y, Matsouaka RA, Thomas L. Propensity score weighting under limited overlap and model
misspecification. Statistical Methods in Medical Research. 2020;29(12):3721-3756.
doi:10.1177/0962280220940334
6 Wendling, T.; Jung, K.; Callahan, A.; Schuler, A.; Shah, N. H.; Gallego, B. (2018): Comparing methods for
estimation of heterogeneous treatment effects using observational data from health care databases. In:
Statistics in medicine 37 (23), S. 3309–3324. DOI: 10.1002/sim.7820.



combines multiple decision trees. Each new tree is fitted to the residuals of the

previous7￼￼

Data preprocessing will be done using SAS while we will use R to conduct the statistical

analysis.

10. Data management and security

We will use data available in the BARMER scientific data warehouse (W-DWH). The detailed

data protection concepts of the BARMER (Appendix A) and the BARMER W-DWH (Appendix

B) including information on the technical, organisational and legal basis of the data collection,

storage and scientific usage are appended (in German).

All datasets were pseudonymized by BARMER. Re-identification of an insured person can only

by conducted by authorized BARMER employees. All data processing and analysis can only be

conducted via secured remote access inside the W-DWH so that a linkage of data with other

sources is not possible. The source files of the database can only be viewed but not accessed

directly. Any download of datasets is prohibited and technically not possible. Results tables

and aggregated data without personal references that are in the narrow sense connected to

the research project can be downloaded from theW-DWH on a personal computer on request

by an authorised person but only if the number of cases in each cell of the results table is large

enough that results cannot be reconstructed for individual insured persons.

Available datasets include pseudonymised information on all persons insured by BARMER

health insurance between 2005 and 2022 e.g. 1) demographics (longitudinal), 2) medical

prescription data, 3) ambulatory data, 4) inpatient and outpatient hospital data, 5) therapeutic

remedies and aids, 6) care data, 7) incapacity to work data, 8) dental data. I can access the

database through a personal secured terminal. The data usage approval is part of the research

partnership between BARMER and aQua GmbH as I use the same personal access to the W-

DWH also for another project within the scope of my employment at aQua GmbH. The usage

approval was extended to this master thesis by BARMER.

7 Jennifer L. Hill (2011) Bayesian Nonparametric Modeling for Causal Inference, Journal of Computational and
Graphical Statistics, 20:1, 217-240, DOI: 10.1198/jcgs.2010.08162 p. 223
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Erklärung zur Nutzung von ChatGPT und vergleichbaren Werkzeugen im
Rahmen von Prüfungen:

In der hier vorliegenden Arbeit habe ich ChatGPT wie folgt genutzt:

gar nicht

bei der Ideenfindung

bei der Erstellung der Gliederung

zum Erstellen einzelner Passagen, insgesamt im Umfang von . . .

zur Entwicklung von Software-Quelltexten

x zur Optimierung oder Umstrukturierung von Software-Quelltexten (ausschließlich
Korrektur-Tipps bei Fehlermeldungen in SAS, R und Latex)

zum Korrekturlesen oder Optimieren

x Weiteres, nämlich: Suche nach synonymen Formulierungen um häufige Wiederholungen
von ähnlicher Satzstruktur und Worten zu vermeiden

Ich versichere, alle Nutzungen vollständig angegeben zu haben. Fehlende oder fehlerhafte
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